Short- and long-term variability of spectral solar UV irradiance at Thessaloniki, Greece: effects of changes in aerosols, total ozone and clouds
-
Published:2016-03-01
Issue:4
Volume:16
Page:2493-2505
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Fountoulakis IliasORCID, Bais Alkiviadis F.ORCID, Fragkos KonstantinosORCID, Meleti Charickleia, Tourpali Kleareti, Zempila Melina Maria
Abstract
Abstract. In this study, we discuss the short- and the long-term variability of spectral UV irradiance at Thessaloniki, Greece, using a long, quality-controlled data set from two Brewer spectrophotometers. Long-term changes in spectral UV irradiance at 307.5, 324 and 350 nm for the period 1994–2014 are presented for different solar zenith angles and discussed in association with changes in total ozone column (TOC), aerosol optical depth (AOD) and cloudiness observed in the same period. Positive changes in annual mean anomalies of UV irradiance, ranging from 2 to 6 % per decade, have been detected both for clear- and all-sky conditions. The changes are generally greater for larger solar zenith angles and for shorter wavelengths. For clear-skies, these changes are, in most cases, statistically significant at the 95 % confidence limit. Decreases in the aerosol load and weakening of the attenuation by clouds lead to increases in UV irradiance in the summer, of 7–9 % per decade for 64° solar zenith angle. The increasing TOC in winter counteracts the effect of decreasing AOD for this particular season, leading to small, statistically insignificant, negative long-term changes in irradiance at 307.5 nm. Annual mean UV irradiance levels are increasing from 1994 to 2006 and remain relatively stable thereafter, possibly due to the combined changes in the amount and optical properties of aerosols. However, no statistically significant corresponding turning point has been detected in the long-term changes of AOD. The absence of signatures of changes in AOD in the short-term variability of irradiance in the UV-A may have been caused by changes in the single scattering albedo of aerosols, which may counteract the effects of changes in AOD on irradiance. The anti-correlation between the year-to-year variability of the irradiance at 307.5 nm and TOC is clear and becomes clearer as the AOD decreases.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference93 articles.
1. Amiridis, V., Balis, D. S., Kazadzis, S., Bais, A., Giannakaki, E.,
Papayannis, A., and Zerefos, C.: Four-year aerosol observations with a Raman
lidar at Thessaloniki, Greece, in the framework of European Aerosol Research
Lidar Network (EARLINET), J. Geophys. Res.-Atmos., 110, D21203,
https://doi.org/10.1029/2005jd006190, 2005. 2. Anderson, G. P., Clough, S., Kneizys, F., Chetwynd, J., and Shettle, E. P.:
AFGL atmospheric constituent profiles (0–120 km), Tech. Rep. TR-86-0110,
AFGL, DTIC Document, 1986. 3. Antón, M., Serrano, A., Cancillo, M. L., GarcÍA, J. A., and
Madronich, S.: Application of an analytical formula for UV Index
reconstructions for two locations in Southwestern Spain, Tellus B, 63,
1052–1058, 2011. 4. Arola, A., Lakkala, K., Bais, A., Kaurola, J., Meleti, C., and Taalas, P.:
Factors affecting short- and long-term changes of spectral UV irradiance at
two European stations, J. Geophys. Res.-Atmos., 108, 4549,
https://doi.org/10.1029/2003jd003447, 2003. 5. Asta, J., Pål, B., Arne, D., Stefan, A.-E., Jörg, R., Kristin, M.,
Michael, F. H., William, B. G., and Johan, M.: Solar radiation and human
health, Rep. Prog. Phys., 74, 066701, https://doi.org/10.1088/0034-4885/74/6/066701,
2011.
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|