Results from a new linear O<sub>3</sub> scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM

Author:

Monge-Sanz B. M.,Chipperfield M. P.,Cariolle D.,Feng W.

Abstract

Abstract. A detailed full-chemistry 3-D chemistry and transport model (CTM) is used to evaluate the current stratospheric O3 parameterisation in the European Centre for Medium-Range Weather Forecasts (ECMWF) model and to obtain an alternative version of the ozone scheme implicitly including heterogeneous chemistry. The approach avoids the inaccurate treatment currently given to heterogeneous ozone chemistry in the ECMWF model, as well as the uncertainties of a cold-tracer. The new O3 scheme (COPCAT) is evaluated within the same CTM used to calculate it. It is the first time such a comparison has been possible, providing direct information on the validity of the linear parameterisation approach for stratospheric ozone. Simulated total column and O3 profiles are compared against Total Ozone Mapping Spectrometer (TOMS) and Halogen Occultation Experiment (HALOE) observations. COPCAT successfully simulates polar loss and reproduces a realistic Antarctic O3 hole. The new scheme is comparable to the full-chemistry in many regions for multiannual runs. The parameterisation produces less ozone over the tropics around 10 hPa, compared to full-chemistry and observations. However, this problem can be ameliorated by choosing a different ozone climatology for the scheme. The new scheme is compared to the current ECMWF scheme in the same CTM runs. The Antarctic O3 hole with the current ECMWF scheme is weaker and disappears earlier than with the new COPCAT scheme. Differences between the current ECMWF scheme and COPCAT are difficult to explain due to the different approach used for heterogeneous chemistry and differences in the photochemical models used to calculate the scheme coefficients. Results with the new COPCAT scheme presented here show that heterogeneous and homogeneous ozone chemistry can be included in a consistent way in a linear ozone parameterisation, without any additional tunable parameters, providing a parameterisation scheme in better agreement with the current knowledge of stratospheric O3 chemistry than previous approaches.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3