Results from a new linear O<sub>3</sub> scheme with embedded heterogeneous chemistry compared with the parent full-chemistry 3-D CTM
-
Published:2011-02-14
Issue:3
Volume:11
Page:1227-1242
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Monge-Sanz B. M.,Chipperfield M. P.,Cariolle D.,Feng W.
Abstract
Abstract. A detailed full-chemistry 3-D chemistry and transport model (CTM) is used to evaluate the current stratospheric O3 parameterisation in the European Centre for Medium-Range Weather Forecasts (ECMWF) model and to obtain an alternative version of the ozone scheme implicitly including heterogeneous chemistry. The approach avoids the inaccurate treatment currently given to heterogeneous ozone chemistry in the ECMWF model, as well as the uncertainties of a cold-tracer. The new O3 scheme (COPCAT) is evaluated within the same CTM used to calculate it. It is the first time such a comparison has been possible, providing direct information on the validity of the linear parameterisation approach for stratospheric ozone. Simulated total column and O3 profiles are compared against Total Ozone Mapping Spectrometer (TOMS) and Halogen Occultation Experiment (HALOE) observations. COPCAT successfully simulates polar loss and reproduces a realistic Antarctic O3 hole. The new scheme is comparable to the full-chemistry in many regions for multiannual runs. The parameterisation produces less ozone over the tropics around 10 hPa, compared to full-chemistry and observations. However, this problem can be ameliorated by choosing a different ozone climatology for the scheme. The new scheme is compared to the current ECMWF scheme in the same CTM runs. The Antarctic O3 hole with the current ECMWF scheme is weaker and disappears earlier than with the new COPCAT scheme. Differences between the current ECMWF scheme and COPCAT are difficult to explain due to the different approach used for heterogeneous chemistry and differences in the photochemical models used to calculate the scheme coefficients. Results with the new COPCAT scheme presented here show that heterogeneous and homogeneous ozone chemistry can be included in a consistent way in a linear ozone parameterisation, without any additional tunable parameters, providing a parameterisation scheme in better agreement with the current knowledge of stratospheric O3 chemistry than previous approaches.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference35 articles.
1. Bhatt, P. P., Remsberg, E. E., Gordley, L. L., McInerney, M. J., Brackett, V. G., and Russell III, J. M.: An evaluation of the quality of Halogen Occultation Experiment ozone profiles in the lower stratosphere, J. Geophys. Res., 104, 9261–9275, 1999. 2. Br{ü}hl, C., Drayson, S. R., Russell III, J. M., Crutzen, P. J., Mclnerney, J. M., Purcell, P. N., Claude, H., Gernandt, H., McGee, T. J., McDermid, I. S., and Gunson, M. R.: Halogen Occultation Experiment ozone channel validation, J. Geophys. Res., 101, 10217–10240, 1996. 3. Cariolle, D. and Déqué, M.: Southern Hemisphere Medium-Scale Waves and Total Ozone Disturbances in a Spectral General Circulation Model, J. Geophys. Res., 91, 10825–10846, 1986. 4. Cariolle, D. and Teyssèdre, H.: A revised linear ozone photochemistry parameterization for use in transport and general circulation models: multi-annual simulations, Atmos. Chem. Phys., 7, 2183–2196, https://doi.org/10.5194/acp-7-2183-2007, 2007. 5. Carslaw, K. S., Luo, B. P., Clegg, S. L., Peter, T., Brimblecombe, P., and Crutzen, P. J.: Stratospheric aerosol growth and HNO3 gas phase depletion from coupled HNO3 and water uptake by liquid particles, Geophys. Res. Lett., 21, 2479–2482, 1994.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|