Neural representation of the stratospheric ozone chemistry

Author:

Mohn HelgeORCID,Kreyling Daniel,Wohltmann Ingo,Lehmann Ralph,Maass Peter,Rex Markus

Abstract

Abstract In climate modeling, the stratospheric ozone layer is typically only considered in a highly simplified form due to computational constraints. For climate projections, it would be of advantage to include the mutual interactions between stratospheric ozone, temperature, and atmospheric dynamics to accurately represent radiative forcing. The overarching goal of our research is to replace the ozone layer in climate models with a machine-learned neural representation of the stratospheric ozone chemistry that allows for a particularly fast, but accurate and stable simulation. We created a benchmark data set from pairs of input and output variables that we stored from simulations of the ATLAS Chemistry and Transport Model. We analyzed several variants of multilayer perceptrons suitable for physical problems to learn a neural representation of a function that predicts 24-h ozone tendencies based on input variables. We performed a comprehensive hyperparameter optimization of the multilayer perceptron using Bayesian search and Hyperband early stopping. We validated our model by replacing the full chemistry module of ATLAS and comparing computation time, accuracy, and stability. We found that our model had a computation time that was a factor of 700 faster than the full chemistry module. The accuracy of our model compares favorably to the full chemistry module within a 2-year simulation run, also outperforms a previous polynomial approach for fast ozone chemistry, and reproduces seasonality well in both hemispheres. In conclusion, the neural representation of stratospheric ozone chemistry in simulation resulted in an ozone layer that showed a high accuracy, significant speed-up, and stability in a long-term simulation.

Funder

Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research

Publisher

Cambridge University Press (CUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3