Pre- and post-production processes increasingly dominate greenhouse gas emissions from agri-food systems

Author:

Tubiello Francesco N.ORCID,Karl Kevin,Flammini Alessandro,Gütschow JohannesORCID,Obli-Laryea​​​​​​​ Griffiths,Conchedda Giulia,Pan Xueyao,Qi Sally Yue,Halldórudóttir Heiðarsdóttir Hörn,Wanner Nathan,Quadrelli Roberta,Rocha Souza Leonardo,Benoit Philippe,Hayek MatthewORCID,Sandalow David,Mencos Contreras​​​​​​​ ErikORCID,Rosenzweig Cynthia,Rosero Moncayo Jose,Conforti Piero,Torero MaximoORCID

Abstract

Abstract. We present results from the FAOSTAT emissions shares database, covering emissions from agri-food systems and their shares to total anthropogenic emissions for 196 countries and 40 territories for the period 1990–2019. We find that in 2019, global agri-food system emissions were 16.5 (95 %; CI range: 11–22) billion metric tonnes (Gt CO2 eq. yr−1), corresponding to 31 % (range: 19 %–43 %) of total anthropogenic emissions. Of the agri-food system total, global emissions within the farm gate – from crop and livestock production processes including on-farm energy use – were 7.2 Gt CO2 eq. yr−1; emissions from land use change, due to deforestation and peatland degradation, were 3.5 Gt CO2 eq. yr−1; and emissions from pre- and post-production processes – manufacturing of fertilizers, food processing, packaging, transport, retail, household consumption and food waste disposal – were 5.8 Gt CO2 eq. yr−1. Over the study period 1990–2019, agri-food system emissions increased in total by 17 %, largely driven by a doubling of emissions from pre- and post-production processes. Conversely, the FAOSTAT data show that since 1990 land use emissions decreased by 25 %, while emissions within the farm gate increased 9 %. In 2019, in terms of individual greenhouse gases (GHGs), pre- and post-production processes emitted the most CO2 (3.9 Gt CO2 yr−1), preceding land use change (3.3 Gt CO2 yr−1) and farm gate (1.2 Gt CO2 yr−1) emissions. Conversely, farm gate activities were by far the major emitter of methane (140 Mt CH4 yr−1) and of nitrous oxide (7.8 Mt N2O yr−1). Pre- and post-production processes were also significant emitters of methane (49 Mt CH4 yr−1), mostly generated from the decay of solid food waste in landfills and open dumps. One key trend over the 30-year period since 1990 highlighted by our analysis is the increasingly important role of food-related emissions generated outside of agricultural land, in pre- and post-production processes along the agri-food system, at global, regional and national scales. In fact, our data show that by 2019, pre- and post-production processes had overtaken farm gate processes to become the largest GHG component of agri-food system emissions in Annex I parties (2.2 Gt CO2 eq. yr−1). They also more than doubled in non-Annex I parties (to 3.5 Gt CO2 eq. yr−1), becoming larger than emissions from land use change. By 2019 food supply chains had become the largest agri-food system component in China (1100 Mt CO2 eq. yr−1), the USA (700 Mt CO2 eq. yr−1) and the EU-27 (600 Mt CO2 eq. yr−1). This has important repercussions for food-relevant national mitigation strategies, considering that until recently these have focused mainly on reductions of non-CO2 gases within the farm gate and on CO2 mitigation from land use change. The information used in this work is available as open data with DOI https://doi.org/10.5281/zenodo.5615082 (Tubiello et al., 2021d). It is also available to users via the FAOSTAT database (https://www.fao.org/faostat/en/#data/EM; FAO, 2021a), with annual updates.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference57 articles.

1. Bellarby, J., Foereid, B., and Hastings, A.: Cool Farming: Climate Impacts of Agriculture and Mitigation Potential, https://abdn.pure.elsevier.com/en/publications/cool-farming-climate-impacts-of-agriculture-and-mitigation-potent (last access: 15 March 2022), 2008.

2. Brentrup, F., Hoxha, A., and Christensen, B.: Carbon footprint analysis of mineral fertilizer production in Europe and other world regions, in: 10th International Conference on Life Cycle Assessment of Food, University College Dublin, 19–21 October 2016, https://www.researchgate.net/profile/Frank-Brentrup-2/publication/312553933_Carbon_footprint_analysis_of_mineral_fertilizer_production_in_Europe_and_other_world_regions/links/5881ec8d4585150dde4012fe/Carbon-footprint-analysis-of-mineral-fertilizer-product (last access: 15 March 2022), 2016.

3. Brentrup, F., Lammel, J., Stephani, T., and Christensen, B.: Updated carbon footprint values for mineral fertilizer from different world regions, in: 11th International Conference on Life Cycle Assessment of Food, Kasetsart University, 17–19 October 2018​​​​​​​, https://www.researchgate.net/publication/329774170_Updated_carbon_footprint_values_for_mineral_fertilizer_from_different_world_regions (last access: 1 January 2022), 2018.

4. Clark, M. A., Domingo, N. G. G., Colgan, K., Thakrar, S. K., Tilman, D., Lynch, J., Azevedo, I. L., and Hill, J. D.: Global food system emissions could preclude achieving the 1.5∘ and 2 ∘C climate change targets, Science, 370, 705–708, https://doi.org/10.1126/science.aba7357, 2020.

5. Conchedda, G. and Tubiello, F. N.: Drainage of organic soils and GHG emissions: validation with country data, Earth Syst. Sci. Data, 12, 3113–3137, https://doi.org/10.5194/essd-12-3113-2020, 2020.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3