Widespread greening suggests increased dry-season plant water availability in the Rio Santa valley, Peruvian Andes

Author:

Hänchen Lorenz,Klein Cornelia,Maussion FabienORCID,Gurgiser WolfgangORCID,Calanca PierluigiORCID,Wohlfahrt GeorgORCID

Abstract

Abstract. In the semi-arid Peruvian Andes, the growing season is mostly determined by the timing of the onset and retreat of the wet season, to which annual crop yields are highly sensitive. Recently, local farmers in the Rio Santa basin (RSB) reported more erratic rainy season onsets and further challenges related to changes in rainfall characteristics. Previous studies based on local rain gauges, however, did not find any significant long-term rainfall changes, potentially linked to the scarce data basis and inherent difficulties in capturing the highly variable rainfall distribution typical for complex mountain terrain. To date, there remains considerable uncertainty in the RSB regarding changes in plant-available water over the last decades. In this study, we exploit satellite-derived information of high-resolution vegetation greenness as an integrated proxy to derive variability and trends of plant water availability. By combining MODIS Aqua and Terra vegetation indices (VIs), datasets of precipitation (both for 2000–2020) and soil moisture (since 2015), we explore recent spatio-temporal changes in the vegetation growing season. We find the Normalized Difference Vegetation Index (NDVI) to be coupled to soil moisture on a sub-seasonal basis, while NDVI and rainfall only coincide on interannual timescales. Over 20 years, we find significant greening in the RSB, particularly pronounced during the dry season (austral winter), indicating an overall increase in plant-available water over the past 2 decades. The start of the growing season (SOS) exhibits high interannual variability of up to 2 months compared to the end of the growing season (EOS), which varies by up to 1 month, therefore dominating the variability of the growing season length (LOS). The EOS becomes significantly delayed over the analysis period, matching the observed dry-season greening. While both in situ and gridded rainfall datasets show incoherent changes in annual rainfall for the region, Climate Hazards InfraRed Precipitation with Station data (CHIRPS) rainfall suggests significant positive dry-season trends for 2 months coinciding with the most pronounced greening. As the greening signal is strongly seasonal and reaches high altitudes on unglaciated valley slopes, we cannot link this signal to water storage changes on timescales beyond one rainy season, making interannual rainfall variability the most likely driver. Exploring El Niño–Southern Oscillation (ENSO) control on greening, we find an overall increased LOS linked to an earlier SOS in El Niño years, which however cannot explain the observed greening and delayed EOS. While our study could not corroborate anecdotal evidence of recent changes, we confirm that the SOS is highly variable and conclude that rainfed farming in the RSB would profit from future efforts being directed towards improving medium-range forecasts of the rainy season onset.

Funder

Österreichischen Akademie der Wissenschaften

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference84 articles.

1. Aide, T. M., Grau, H. R., Graesser, J., Andrade-Nuñez, M. J., Aráoz, E., Barros, A. P., Campos-Cerqueira, M., Chacon-Moreno, E., Cuesta, F., Espinoza, R., Peralvo, M., Polk, M. H., Rueda, X., Sanchez, A., Young, K. R., Zarbá, L., and Zimmerer, K. S.: Woody vegetation dynamics in the tropical and subtropical Andes from 2001 to 2014: Satellite image interpretation and expert validation, Glob. Change Biol., 25, 2112–2126, https://doi.org/10.1111/gcb.14618, 2019. a

2. al Fahad, A., Burls, N. J., and Strasberg, Z.: How will Southern Hemisphere subtropical anticyclones respond to global warming? Mechanisms and seasonality in CMIP5 and CMIP6 model projections, Clim. Dynam., 55, 703–718, https://doi.org/10.1007/s00382-020-05290-7, 2020. a

3. Anyamba, A. and Tucker, C. J.: Analysis of Sahelian vegetation dynamics using NOAA-AVHRR NDVI data from 1981–2003, J. Arid Environ., 63, 596–614, https://doi.org/10.1016/j.jaridenv.2005.03.007, 2005. a

4. Arias, P. A., Garreaud, R., Poveda, G., Espinoza, J. C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., and van Oevelen, P. J.: Hydroclimate of the Andes Part II: Hydroclimate Variability and Sub-Continental Patterns, Front. Earth Sci., 8, p. 666, https://doi.org/10.3389/feart.2020.505467, 2021. a

5. Atzberger, C. and Eilers, P. H.: A time series for monitoring vegetation activity and phenology at 10-daily time steps covering large parts of South America, Int. J. Digit. Earth, 4, 365–386, https://doi.org/10.1080/17538947.2010.505664, 2011. a

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3