Recharge estimation and soil moisture dynamics in a Mediterranean, semi-arid karst region

Author:

Ries F.,Lange J.ORCID,Schmidt S.,Puhlmann H.,Sauter M.

Abstract

Abstract. Knowledge of soil moisture dynamics in the unsaturated soil zone provides valuable information on the temporal and spatial variability of groundwater recharge. This is especially true for the Mediterranean region, where a substantial fraction of long-term groundwater recharge is expected to occur during high magnitude precipitation events of above-average wet winters. To elucidate process understanding of infiltration processes during these extreme events, a monitoring network of precipitation gauges, meteorological stations, and soil moisture plots was installed in an area with a steep climatic gradient in the Jordan Valley region. In three soil moisture plots, Hydrus-1D was used to simulate water movement in the unsaturated soil zone with soil hydraulic parameters estimated by the Shuffled Complex Evolution Metropolis algorithm. To generalize our results, we modified soil depth and rainfall input to simulate the effect of the pronounced climatic gradient and soil depth variability on percolation fluxes and applied the calibrated model to a time series with 62 years of meteorological data. Soil moisture measurements showed a pronounced seasonality and suggested rapid infiltration during heavy rainstorms. Hydrus-1D successfully simulated short and long-term soil moisture patterns, with the majority of simulated deep percolation occurring during a few intensive rainfall events. Temperature drops in a nearby groundwater well were observed synchronously with simulated percolation pulses, indicating rapid groundwater recharge mechanisms. The 62-year model run yielded annual percolation fluxes of up to 66% of precipitation depths during wet years and of 0% during dry years. Furthermore, a dependence of recharge on the temporal rainfall distribution could be shown. Strong correlations between depth of recharge and soil depth were also observed.

Funder

Bundesministerium für Bildung und Forschung

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference88 articles.

1. Abusaada, M. J.: Flow Dynamics and Management Options in Stressed Carbonate Aquifer System, The Western Aquifer Basin, Palestine, PhD Thesis, University of Göttingen, 2011.

2. Allen, R. G., Pereira, L. S., Raes, D., and Smith, M.: Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements, Irrigation and Drainage Paper 56, FAO, Rome, 1998.

3. Allocca, V., Manna, F., and De Vita, P.: Estimating annual groundwater recharge coefficient for karst aquifers of the southern Apennines (Italy), Hydrol. Earth Syst. Sci., 18, 803–817, https://doi.org/10.5194/hess-18-803-2014, 2014.

4. Andreo, B., Vías, J., Durán, J. J., Jiménez, P., López-Geta, J. A., and Carrasco, F.: Methodology for groundwater recharge assessment in carbonate aquifers: application to pilot sites in southern Spain, Hydrogeol. J., 16, 911–925, 2008.

5. ANTEA: Well Development Study of the Eastern Aquifer Basin, Northern Districts of Palestine, vol. 1, Interim Report, Conceptual Model, unpublished ANTEA Report No. A11903, 1998.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3