Woody plant encroachment modifies carbonate bedrock: field evidence for enhanced weathering and permeability

Author:

Leite Pedro A. M.,Schmidt Logan M.,Rempe Daniella M.,Olariu Horia G.,Walker John W.,McInnes Kevin J.,Wilcox Bradford P.

Abstract

AbstractLittle is known about the effects of woody plant encroachment—a recent but pervasive phenomenon—on the hydraulic properties of bedrock substrates. Recent work using stream solute concentrations paired with weathering models suggests that woody plant encroachment accelerates limestone weathering. In this field study, we evaluate this hypothesis by examining bedrock in the Edwards Plateau, an extensive karst landscape in Central Texas. We compared a site that has been heavily encroached by woody plants (mainlyQuercus fusiformisandJuniperus ashei), with an adjacent site that has been maintained free of encroachment for the past eight decades. Both sites share the same bedrock, as confirmed by trenching, and originally had very few trees, which enabled us to evaluate how encroachment impacted the evolution of hydraulic properties over a period of no more than 80 years. Using in situ permeability tests in boreholes drilled into the weathered bedrock, we found that the mean saturated hydraulic conductivity of the bedrock was higher—by an order of magnitude—beneath woody plants than in the areas where woody plants have been continuously suppressed. Additionally, woody plant encroachment was associated with greater regolith thickness, greater plant rooting depths, significantly lower rock hardness, and a 24–44% increase in limestone matrix porosity. These findings are strong indicators that woody plant encroachment enhances bedrock weathering, thereby amplifying its permeability—a cycle of mutual reinforcement with the potential for substantial changes within a few decades. Given the importance of shallow bedrock for ecohydrological and biogeochemical processes, the broader impacts of woody plant encroachment on weathering rates and permeability warrant further investigation.

Funder

USDA-NIFA

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3