Urbanization dramatically altered the water balances of a paddy field-dominated basin in southern China

Author:

Hao L.,Sun G.,Liu Y.,Wan J.ORCID,Qin M.,Qian H.,Liu C.,Zheng J.,John R.,Fan P.,Chen J.

Abstract

Abstract. Rice paddy fields provide important ecosystem services (e.g., food production, water retention, carbon sequestration) to a large population globally. However, these benefits are diminishing as a result of rapid environmental and socioeconomic transformations, characterized by population growth, urbanization, and climate change in many Asian countries. This case study examined the responses of stream flow and watershed water balances to the decline of rice paddy fields due to urbanization in the Qinhuai River basin in southern China, where massive industrialization has occurred during the past 3 decades. We found that stream flow increased by 58 % and evapotranspiration (ET) decreased by 23 % during 1986–2013 as a result of a three-fold increase in urban areas and a reduction of rice paddy fields by 27 %. Both high flows and low flows increased significantly by about 28 % from 2002 to 2013. The increases in stream flow were consistent with the decreases in ET and leaf area index monitored by independent remote sensing MODIS (Moderate Resolution Imaging Spectroradiometer) data. Attribution analysis, based on two empirical models, indicated that land-use/land-cover change contributed about 82–108 % of the observed increase in stream flow from 353 ± 287 mm yr−1 during 1986–2002 to 556 ± 145 during 2003–2013. We concluded that the reduction in ET was largely attributed to the conversion of cropland to urban use. The effects of land-use change overwhelmed the effects of regional climate warming and climate variability. Converting traditional rice paddy fields to urban use dramatically altered land surface conditions from an artificial wetland-dominated landscape to an urban land-use- dominated one, and thus was considered an extreme type of contemporary hydrologic disturbance. The ongoing large-scale urbanization of the rice paddy-dominated regions, in humid southern China and East Asia, will likely elevate storm-flow volume, aggravate flood risks, and intensify urban heat island effects. Understanding the connection between land-use/land-cover change and changes in hydrological processes is essential for better management of urbanizing watersheds in the rice paddy-dominated landscape.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3