Trends in floods in West Africa: analysis based on 11 catchments in the region

Author:

Nka B. N.,Oudin L.,Karambiri H.,Paturel J. E.,Ribstein P.

Abstract

Abstract. After the drought of the 1970s in West Africa, the variability in rainfall and land use changes mostly affected flow, and recently flooding has been said to be an increasingly common occurrence throughout the whole of West Africa. These changes have raised many questions about the impact of climate change on the flood regimes in West African countries. This paper investigates whether floods are becoming more frequent or more severe and to what extent climate patterns have been responsible for these changes. We analyzed the trends in the floods occurring in 11 catchments within West Africa's main climate zones. The methodology includes two methods for sampling flood events, namely the AM (annual maximum) method and the POT (peak over threshold), and two perspectives of analysis are presented: long-term analysis based on two long flood time series and a regional perspective involving 11 catchments with shorter series. The Mann–Kendall trend test and the Pettitt break test were used to detect nonstationarities in the time series. The trends detected in flood time series were compared to the rainfall index trends and vegetation indices using contingency tables in order to identify the main driver of change in flood magnitude and flood frequency. The relation between the flood index and the physiographic index was evaluated through a success criterion and the Cramer criterion calculated from the contingency tables. The results show the existence of trends in flood magnitude and flood frequency time series, with two main patterns. Sahelian floods show increasing flood trends and one Sudanian. catchment presents decreasing flood trends. For the overall catchments studied, trends in the maximum 5-day consecutive rainfall index (R5d) show good coherence with trends in flood, while the trends in normalized difference vegetation indices (NDVIs) do not show a significant agreement with flood trends, meaning that this index has possibly no impact on the behavior of floods in the region.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Reference56 articles.

1. Abdul Aziz, O. I. and Burn, D. H.: Trends and variability in the hydrological regime of the Mackenzie River Basin, J. Hydrol., 319, 282–294, https://doi.org/10.1016/j.jhydrol.2005.06.039, 2006.

2. Aich, V., Koné, B., Hattermann, F. F., and Müller, E. N.: Floods in the Niger basin – analysis and attribution, Nat. Hazards Earth Syst. Sci. Discuss., 2, 5171–5212, https://doi.org/10.5194/nhessd-2-5171-2014, 2014.

3. Albergel, J.: Sécheresse, désertification et ressources en eau de surface – Application aux petits bassins du Burkina Faso, in: The Influence of Climate Change and Climatic Variability on the Hydrologic Regime and Water Resources, Proceedings of the Vancouver Symposium, Vancouver, Canada, August 1987, IAHS Publi. no. 168, 355–365, 1987.

4. Amani, A. and Nguetora, M.: Evidence d'une modification du regime hydrologique du fleuve Niger a Niamey, in: FRIEND 2002 – Regional Hydrology: Briging the Gap between Research and Practice, Porceedings of the fourth International FRIEND Conference held at Cape Town, South Africa, March 2002, IAHS Publ. no. 274, 449–457, 2002.

5. Amogu, O., Descroix, L., Yéro, K. S., Le Breton, E., Mamadou, I., Ali, A., Vischel, T., Bader, J.-C., Moussa, I. B., Gautier, E., Boubkraoui, S., and Belleudy, P.: Increasing river flows in the Sahel?, Water, 2, 170–199, https://doi.org/10.3390/w2020170, 2010.

Cited by 72 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3