The hydrological system as a living organism
-
Published:2024-04-18
Issue:
Volume:385
Page:1-4
-
ISSN:2199-899X
-
Container-title:Proceedings of IAHS
-
language:en
-
Short-container-title:Proc. IAHS
Author:
Savenije Hubert H. G.ORCID
Abstract
Abstract. Hydrology is the bloodstream of the terrestrial system. The terrestrial system is alive, with the ecosystem as its active agent. The ecosystem optimises its survival within the constraints of energy, water, climate and nutrients. The key variables that the ecosystem can modify are the controls on fluxes and storages in the hydrological system, such as: the capacities of preferential flow paths (preferential infiltration, recharge and subsurface drainage); and the storage capacities in the root zone, wetlands, canopy and ground surface. It can also, through evolution, adjust the efficiency of carbon sequestration and moisture uptake. Some of these adjustments can be made fast, particularly rootzone storage capacity, infiltration capacity, vegetation density and species composition. These system components are important controls on hydrological processes that in hydrological models are generally considered static and are determined by calibration on climatic drivers of the past. This leads to hydrological models that are dead and incapable to react to change, whereas the hydrological system is alive and will adjust. The physical law driving this evolutionary process is the second law of thermodynamics with the Carnot limit as its constraint. This physical limit allows optimisation techniques to explore the reaction of the hydrological system and its components to change in climatic drivers. This implies a new direction in the theory of hydrology, required to deal with change and addressing the Unsolved Problems in Hydrology.
Publisher
Copernicus GmbH
Reference24 articles.
1. Beven, K. J.: Rainfall-runoff modelling: the primer, John Wiley & Sons, 2011. 2. Blöschl, G., Bierkens, M. F., Chambel, A., et al.: Twenty-three unsolved problems in hydrology (UPH) – a community perspective, Hydrolog. Sci. J., 64, 1141–1158, 2019. 3. Bouaziz, L. J. E., Steele-Dunne, S. C., Schellekens, J., Weerts, A. H., Stam, J., Sprokkereef, E., Winsemius, H., Savenije, H., and Hrachowitz, M.: Improved understanding of the link between catchment-scale vegetation accessible storage and satellite-derived Soil Water Index, Water Resour. Res., 56, e2019WR026365, https://doi.org/10.1029/2019WR026365, 2020. 4. Bouaziz, L. J. E., Aalbers, E. E., Weerts, A. H., Hegnauer, M., Buiteveld, H., Lammersen, R., Stam, J., Sprokkereef, E., Savenije, H. H. G., and Hrachowitz, M.: Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters, Hydrol. Earth Syst. Sci., 26, 1295–1318, https://doi.org/10.5194/hess-26-1295-2022, 2022. 5. De Boer-Euser, T., McMillan, H. K., Hrachowitz, M., Winsemius, H. C., and Savenije, H. H. G.: Influence of soil and climate on root zone storage capacity, Water Resour. Res., 52, 2009–2024, 2016.
|
|