Ecosystem adaptation to climate change: the sensitivity of hydrological predictions to time-dynamic model parameters

Author:

Bouaziz Laurène J. E.ORCID,Aalbers Emma E.,Weerts Albrecht H.ORCID,Hegnauer Mark,Buiteveld Hendrik,Lammersen Rita,Stam Jasper,Sprokkereef Eric,Savenije Hubert H. G.ORCID,Hrachowitz MarkusORCID

Abstract

Abstract. Future hydrological behavior in a changing world is typically predicted based on models that are calibrated on past observations, disregarding that hydrological systems and, therefore, model parameters may change as well. In reality, hydrological systems experience almost continuous change over a wide spectrum of temporal and spatial scales. In particular, there is growing evidence that vegetation adapts to changing climatic conditions by adjusting its root zone storage capacity, which is the key parameter of any terrestrial hydrological system. In addition, other species may become dominant, both under natural and anthropogenic influence. In this study, we test the sensitivity of hydrological model predictions to changes in vegetation parameters that reflect ecosystem adaptation to climate and potential land use changes. We propose a top-down approach, which directly uses projected climate data to estimate how vegetation adapts its root zone storage capacity at the catchment scale in response to changes in the magnitude and seasonality of hydro-climatic variables. Additionally, long-term water balance characteristics of different dominant ecosystems are used to predict the hydrological behavior of potential future land use change in a space-for-time exchange. We hypothesize that changes in the predicted hydrological response as a result of 2 K global warming are more pronounced when explicitly considering changes in the subsurface system properties induced by vegetation adaptation to changing environmental conditions. We test our hypothesis in the Meuse basin in four scenarios designed to predict the hydrological response to 2 K global warming in comparison to current-day conditions, using a process-based hydrological model with (a) a stationary system, i.e., no assumed changes in the root zone storage capacity of vegetation and historical land use, (b) an adapted root zone storage capacity in response to a changing climate but with historical land use and (c, d) an adapted root zone storage capacity considering two hypothetical changes in land use. We found that the larger root zone storage capacities (+34 %) in response to a more pronounced climatic seasonality with warmer summers under 2 K global warming result in strong seasonal changes in the hydrological response. More specifically, streamflow and groundwater storage are up to −15 % and −10 % lower in autumn, respectively, due to an up to +14 % higher summer evaporation in the non-stationary scenarios compared to the stationary benchmark scenario. By integrating a time-dynamic representation of changing vegetation properties in hydrological models, we make a potential step towards more reliable hydrological predictions under change.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3