Monitoring shallow subsidence in cultivated peatlands

Author:

van Asselen Sanneke,Erkens Gilles,de Graaf Francis

Abstract

Abstract. Accurate monitoring of shallow subsidence in cultivated peatlands is a great challenge. Peat compaction by loading and peat oxidation by groundwater level lowering are two important processes contributing to shallow subsidence in cultivated peatlands, causing an overall increase in soil wetness over time and hence a lower soil-bearing capacity and agricultural production. Peat oxidation also causes emission of CO2 and other greenhouse gasses. Rigorous monitoring techniques are urgently needed to spatially and temporally map the amount and rate of subsidence and to monitor effects of measures to reduce subsidence and its negative impacts on livestock farming and agriculture. Monitoring shallow subsidence in peatlands is particularly challenging, because subsidence is a slow and spatially complex process, with average rates in the order of mm yr−1 but with higher rates possibly occurring on shorter timescales. The desired monitoring system must be able to capture this temporal and spatial variability, and preferably the contribution of different processes to total subsidence. The system needs to be applicable (technically- and financially-speaking) at regional scales, without severely impacting daily farming activities. To help design and test a subsidence monitoring system for cultivated peatland areas, four methods to measure subsidence are applied and assessed in a cultivated peatland in Overijssel (NL), namely spirit levelling, extensometery, LiDAR, and InSAR. In this paper, we focus on the levelling and extensometery methods and measurements. Subsidence was measured since October 2018 at eight livestock farms once every three months by levelling. In the same period, extensometers have measured vertical movement of (sub)surface levels hourly at two livestock farms. In addition, phreatic groundwater levels are continuously monitored. Preliminary results show vertical movements (up and down) in the order of centimeters on the timescale of weeks. These movements seem to be related to groundwater level fluctuations, but also evapotranspiration is expected to contribute to additional subsidence during the summer period. Because long term net subsidence is a slow process, additional data collection is needed to assess the different methods and the temporal and spatial fluctuations in subsidence on longer timescales. This is vital information to design the optimal method for monitoring subsidence in cultivated peatlands on large spatial scales, and to help in selecting effective measures to reduce subsidence and greenhouse gas emission in peatlands.

Publisher

Copernicus GmbH

Subject

General Medicine

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3