Methane dynamics in three different Siberian water bodies under winter and summer conditions
-
Published:2021-03-22
Issue:6
Volume:18
Page:2047-2061
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Bussmann IngeborgORCID, Fedorova Irina, Juhls BennetORCID, Overduin Pier PaulORCID, Winkel MatthiasORCID
Abstract
Abstract. Arctic regions and their water bodies are affected by a rapidly warming
climate. Arctic lakes and small ponds are known to act as an important
source of atmospheric methane. However, not much is known about other types of water bodies in permafrost
regions, which include major rivers and coastal bays as a transition type
between freshwater and marine environments. We monitored dissolved methane
concentrations in three different water bodies (Lena River, Tiksi Bay, and
Lake Golzovoye, Siberia, Russia) over a period of 2 years. Sampling was
carried out under ice cover (April) and in open water (July–August). The
methane oxidation (MOX) rate and the fractional turnover rate (k′)
in water and melted ice samples from the late winter of 2017 was determined with the radiotracer method. In the Lena River winter methane concentrations were a quarter of the summer concentrations (8 nmol L−1 vs. 31 nmol L−1), and mean winter MOX rate was low (0.023 nmol L−1 d−1). In contrast, Tiksi Bay winter methane concentrations were 10 times higher than in summer (103 nmol L−1 vs. 13 nmol L−1). Winter MOX rates showed a median of 0.305 nmol L−1 d−1. In Lake Golzovoye, median methane concentrations in winter were 40 times higher than in summer (1957 nmol L−1 vs. 49 nmol L−1). However, MOX was much
higher in the lake (2.95 nmol L−1 d−1) than in either the river or bay. The temperature had a strong influence on the MOX
(Q10=2.72±0.69). In summer water temperatures ranged from 7–14 ∘C and in winter from −0.7 to 1.3 ∘C. In the ice cores a median methane concentration of 9 nM was observed, with no gradient between the ice surface and the bottom layer at the ice–water interface. MOX in the (melted) ice cores was mostly below the detection limit. Comparing methane concentrations in the ice with the underlaying water column revealed methane concentration in the water column 100–1000 times higher. The winter situation seemed to favor a methane accumulation under ice,
especially in the lake with a stagnant water body. While on the other hand,
in the Lena River with its flowing water, no methane accumulation under ice
was observed. In a changing, warming Arctic, a shorter ice cover period is
predicted. With respect to our study this would imply a shortened time for
methane to accumulate below the ice and a shorter time for the less
efficient winter MOX. Especially for lakes, an extended time of ice-free
conditions could reduce the methane flux from the Arctic water bodies.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference94 articles.
1. Angelopoulos, M., Westermann, S., Overduin, P., Faguet, A., Olenchenko, V.,
Grosse, G., and Grigoriev, M. N.: Heat and salt flow in subsea permafrost
modeled with CryoGRID2, J. Geophys. Res.-Earth, 124, 920–937, https://doi.org/10.1029/2018JF004823, 2019. 2. Bale, N. J., Rijpstra, W. I. C., Sahonero-Canavesi, D. X., Oshkin, I. Y.,
Belova, S. E., Dedysh, S. N., and Sinninghe Damsté, J. S.: Fatty acid
and hopanoid adaption to cold in the nethanotroph Methylovulum psychrotolerans, Front. Microbiol., 10, 589, https://doi.org/10.3389/fmicb.2019.00589, 2019. 3. Bastviken, D., Ejlertsson, J., Sundh, I., and Tranvik, L.: Measurement of
methane oxidation in lakes: a comparison of methods, Environ. Sci. Technol.,
36, 3354–3361, 2002. 4. Bastviken, D., Cole, J., Pace, M., and Tranvik, L.: Methane emissions from
lakes: Dependence of lake characteristics, two regional assessments, and a
global estimate, Global Biogeochem. Cy., 18, GB4009, https://doi.org/10.1029/2004GB002238, 2004. 5. Bednařík, A., Blaser, M., Matoušů, A., Tušer, M., Chaudhary, P. P., Šimek, K., and Rulík, M.: Sediment methane dynamics along the Elbe River, Limnologica, 79, 125716, https://doi.org/10.1016/j.limno.2019.125716, 2019.
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|