Temperature, Water Depth, and Flow Velocity Are Important Drivers of Methane Ebullition in a Temperate Lowland Stream

Author:

Bednařík A.1ORCID,Bodmer P.2,Darenova E.1,Kokrda L.1,Pavelka M.1ORCID

Affiliation:

1. Department of Matters and Energy Fluxes Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic

2. Groupe de Recherche Interuniversitaire en Limnologie (GRIL) Département des sciences biologiques Université du Québec à Montréal Montréal QC Canada

Abstract

AbstractStreams and rivers are a well‐recognized source of methane (CH4), with high spatiotemporal variability in fluxes. However, CH4 release in form of bubbles (ebullition) is rarely included in current global CH4 emission estimates from lotic ecosystems, due to the lack of reliable models to upscale ebullition. Our study aimed to determine the importance of individual emission pathways (diffusion and ebullition) for total CH4 emissions from a lowland stream with low sediment heterogeneity and explore the relations of ebullition to environmental variables to build a stream ebullition model for this simplified system. We measured CH4 and carbon dioxide (CO2) diffusive emissions and ebullition from a temperate lowland stream in Czech Republic (Central Europe) during the ice‐free season 2021. The studied stream was a significant source of CH4 (mean 260 ± 107 mg CH4 m−2 day−1), with ebullition as a prevailing pathway of CH4 emission (mean 74 ± 7%, range 55%–85%) throughout the whole monitored period. CH4 ebullition showed a high spatiotemporal heterogeneity, with sediment temperature and water depth as the strongest predictors, followed by the interaction between flow velocity and sediment temperature. Our model explained 81% of total variance of CH4 ebullition and suggests that it is possible to model ebullitive fluxes in lowland streams with homogeneous sediments. Since CH4 was an important part of the total CO2‐equivalent emissions from the examined stream, accounting for mean (±SD) 35 ± 7.4%, and ebullition the majority of the CH4 emission, the ability to adequately model ebullition is pertinent for lowland streams.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3