Fungal loop transfer of nitrogen depends on biocrust constituents and nitrogen form

Author:

Aanderud Zachary T.,Smart Trevor B.,Wu Nan,Taylor Alexander S.,Zhang Yuanming,Belnap Jayne

Abstract

Abstract. Besides performing multiple ecosystem services individually and collectively, biocrust constituents may also create biological networks connecting spatially and temporally distinct processes. In the fungal loop hypothesis rainfall variability allows fungi to act as conduits and reservoirs, translocating resources between soils and host plants. To evaluate the extent to which biocrust species composition and nitrogen (N) form influence loops, we created a minor, localized rainfall event containing 15NH4+ and 15NO3-. We then measured the resulting δ15N in the surrounding dry cyanobacteria- and lichen-dominated crusts and grass, Achnatherum hymenoides, after 24 h. We also estimated the biomass of fungal constituents using quantitative PCR and characterized fungal communities by sequencing the 18S rRNA gene. We found evidence for the initiation of fungal loops in cyanobacteria-dominated crusts where 15N, from 15NH4+, moved 40 mm h−1 in biocrust soils with the δ15N of crusts decreasing as the radial distance from the water addition increased (linear mixed effects model (LMEM)): R2=0.67, F2,12=11, P=0.002). In cyanobacteria crusts, δ15N, from 15NH4+, was diluted as Ascomycota biomass increased (LMEM: R2=0.63, F2,8=6.8, P=0.02), Ascomycota accounted for 82 % (±2.8) of all fungal sequences, and one order, Pleosporales, comprised 66 % (±6.9) of Ascomycota. The seeming lack of loops in moss-dominated crusts may stem from the relatively large moss biomass effectively absorbing and holding N from our minor wet deposition event. The substantial movement of 15NH4+ may indicate a fungal preference for the reduced N form during amino acid transformation and translocation. We found a marginally significant enrichment of δ15N in A. hymenoides leaves but only in cyanobacteria biocrusts translocating 15N, offering evidence of links between biocrust constituents and higher plants. Our results suggest that minor rainfall events may initiate fungal loops potentially allowing constituents, like dark septate Pleosporales, to rapidly translocate N from NH4+ over NO3- through biocrust networks.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3