Soil-related developments of the Biome-BGCMuSo v6.2 terrestrial ecosystem model

Author:

Hidy Dóra,Barcza Zoltán,Hollós Roland,Dobor LauraORCID,Ács Tamás,Zacháry Dóra,Filep Tibor,Pásztor LászlóORCID,Incze Dóra,Dencső Márton,Tóth Eszter,Merganičová Katarína,Thornton PeterORCID,Running Steven,Fodor Nándor

Abstract

Abstract. Terrestrial biogeochemical models are essential tools to quantify climate–carbon cycle feedback and plant–soil relations from local to global scale. In this study, a theoretical basis is provided for the latest version of the Biome-BGCMuSo biogeochemical model (version 6.2). Biome-BGCMuSo is a branch of the original Biome-BGC model with a large number of developments and structural changes. Earlier model versions performed poorly in terms of soil water content (SWC) dynamics in different environments. Moreover, lack of detailed nitrogen cycle representation was a major limitation of the model. Since problems associated with these internal drivers might influence the final results and parameter estimation, additional structural improvements were necessary. In this paper the improved soil hydrology as well as the soil carbon and nitrogen cycle calculation methods are described in detail. Capabilities of the Biome-BGCMuSo v6.2 model are demonstrated via case studies focusing on soil hydrology, soil nitrogen cycle, and soil organic carbon content estimation. Soil-hydrology-related results are compared to observation data from an experimental lysimeter station. The results indicate improved performance for Biome-BGCMuSo v6.2 compared to v4.0 (explained variance increased from 0.121 to 0.8 for SWC and from 0.084 to 0.46 for soil evaporation; bias changed from −0.047 to −0.007 m3 m−3 for SWC and from −0.68 to −0.2 mm d−1 for soil evaporation). Simulations related to nitrogen balance and soil CO2 efflux were evaluated based on observations made in a long-term field experiment under crop rotation. The results indicated that the model is able to provide realistic nitrate content estimation for the topsoil. Soil nitrous oxide (N2O) efflux and soil respiration simulations were also realistic, with overall correspondence with the observations (for the N2O efflux simulation bias was between −0.13 and −0.1 mgNm-2d-1, and normalized root mean squared error (NRMSE) was 32.4 %–37.6 %; for CO2 efflux simulations bias was 0.04–0.17 gCm-2d-1, while NRMSE was 34.1 %–40.1 %). Sensitivity analysis and optimization of the decomposition scheme are presented to support practical application of the model. The improved version of Biome-BGCMuSo has the ability to provide more realistic soil hydrology representation as well as nitrification and denitrification process estimation, which represents a major milestone.

Funder

Magyarország Kormánya

Nemzeti Kutatási, Fejlesztési és Innovaciós Alap

European Regional Development Fund

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3