Abstract
Abstract. Due to the small-scale and non-stationary nature of the convective wind gusts usually associated with thunderstorms, there is a considerable lack of knowledge regarding their characteristics and statistics. In an effort to remedy this situation, we investigated in this study a set of 110 climate stations of the German Weather Service between 1992 and 2014 to analyze the temporal and spatial distribution, intensity, and occurrence probability of convective gusts. Similar to thunderstorm activity, the frequency of convective gusts decreases gradually from southern to northern Germany. No further spatial structures, such as a relation to orography or climate conditions, can be identified regarding their strength or likelihood. Rather, high wind speeds of above 30 m s−1 can be expected everywhere in Germany with almost similar occurrence probabilities. A comparison of the 20-year return values of convective gusts with those of turbulent gusts demonstrates that the latter have higher frequencies, especially in northern Germany. However, for higher return periods, this effect can be reversed at some stations. The values of the convective gust factors are mainly in a range between 1 and 4 but can even reach values up to 10. Besides the dependency from the averaging time period of the mean wind, the values of the gust factors additionally depend on the event duration and the storm type, respectively.
Funder
Deutsche Forschungsgemeinschaft
Subject
General Earth and Planetary Sciences
Reference77 articles.
1. Abild, J., Andersen, E. Y., and Rosbjerg, D.: The climate of extreme winds at the Great Belt, Denmark, J. Wind Eng. Ind. Aerodyn., 41, 521–532, 1992.
2. Anderson, G. and Klugmann, D.: A European lightning density analysis using 5 years of ATDnet data, Nat. Hazards Earth Syst. Sci., 14, 815–829, https://doi.org/10.5194/nhess-14-815-2014, 2014.
3. ASCE: Minimum design loads for buildings and other structures (ASCE/SEI 7-10), Structural Engineering Institute, American Society of Civil Engineers, Reston, Virginia, USA, 2010.
4. Barthlott, C., Mühr, B., and Hoose, C.: Sensitivity of the 2014 Pentecost storms over Germany to different model grids and microphysics schemes, Q. J. Roy. Meteorol. Soc., 143, 1485–1503, 2017.
5. Brabson, B. B. and Palutikof, J. P.: Tests of the Generalized Pareto Distribution for predicting extreme wind speeds, J. Appl. Meteorol., 39, 1627–1641, 2000.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献