Landslide and debris flow susceptibility zonation using TRIGRS for the 2011 Seoul landslide event

Author:

Park D. W.,Nikhil N. V.,Lee S. R.

Abstract

Abstract. This paper presents the results from the application of a regional, physically based stability model: Transient Rainfall Infiltration and Grid-based Regional Slope-stability analysis (TRIGRS) for a region on Woomyeon Mountain, Seoul, South Korea. This model couples an infinite-slope stability analysis with a one-dimensional analytical solution to predict the transient pore pressure response to the infiltration of rainfall. TRIGRS also adopts the geographic information system (GIS) framework for determining the whole behaviour of a slope. In this paper, we suggest an index for evaluating the results produced by the model. Particular attention is devoted to the prediction of routes of debris flow, using a runoff module. In this context, the paper compares observed landslide and debris flow events with those predicted by the TRIGRS model. The TRIGRS model, originally developed to predict shallow landslides, has been extended in this study for application to debris flows. The results predicted by the TRIGRS model are presented as safety factor (FS) maps corresponding to transient rainfall events, and in terms of debris flow paths using methods proposed by several researchers in hydrology. In order to quantify the effectiveness of the model, we proposed an index called LRclass (landslide ratio for each predicted FS class). The LRclass index is mainly applied in regions where the landslide scar area is not well defined (or is unknown), in order to avoid overestimation of the model results. The use of the TRIGRS routing module was proposed to predict the paths of debris flow, especially in areas where the rheological properties and erosion rates of the materials are difficult to obtain. Although an improvement in accuracy is needed, this module is very useful for preliminary spatio-temporal assessment over wide areas. In summary, the TRIGRS model is a powerful tool of use to decision makers for susceptibility mapping, particularly when linked with various advanced applications using GIS spatial functions.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3