Study of Earthquake Landslide Hazard by Defining Potential Landslide Thickness Using Excess Topography: A Case Study of the 2014 Ludian Earthquake Area, China

Author:

Zhang Pengfei123,Xu Chong45ORCID,Chen Xiaoli12,Zhou Qing12,Xiao Haibo3,Li Zhiyuan3

Affiliation:

1. Institute of Geology, China Earthquake Administration, Beijing 100029, China

2. Key Laboratory of Seismic and Volcanic Hazards, China Earthquake Administration, Beijing 100029, China

3. Power China Beijing Engineering Corporation Limited, Beijing 100024, China

4. National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing 100085, China

5. Key Laboratory of Compound and Chained Natural Hazards Dynamics, Ministry of Emergency Management of China, Beijing 100085, China

Abstract

Influenced by the combined effects of crustal uplift and river downcutting, rivers with significant potential energy are often found in high mountain and canyon areas. Due to the active tectonic movements that these areas have experienced or are currently experiencing, geological hazards frequently occur on the mountains flanking the rivers. Therefore, evaluating the susceptibility and risk of earthquake landslides in river segments of these high mountain and canyon areas is of great importance for disaster prevention and mitigation, as well as for the safe construction and operation of hydropower stations. Currently, a major challenge in the study of landslide susceptibility and hazard is determining the thickness of potential landslide bodies. The presence of excess topography reflects the instability of the disrupted slopes, which is also a fundamental cause of landslides. This study takes the example of the Ludian earthquake in 2014, focusing on the IX and VIII intensity zones, to extract the excess topography in the study area and analyze its correlation with seismic landslides. The correlation between the critical acceleration value and the excess topography was validated using the Spearman’s rank correlation coefficient, resulting in a correlation coefficient of −0.771. This indicates a strong negative correlation between the excess topography and critical acceleration, with significant relevance. The landslide susceptibility distribution obtained by setting the potential landslide thickness based on the excess topography and proportion coefficient showed an ROC curve analysis AUC value of 0.829. This is higher than the AUC value of 0.755 for the landslide susceptibility result using a uniform potential landslide thickness of 3 m, indicating the higher model evaluation accuracy of this approach. Earthquake landslide hazard predictions for rapid post-earthquake assessments and earthquake landslide hazard zoning for pre-earthquake planning were made using actual seismic ground motion and a 2% exceedance probability in 50 years, respectively. Comparing these with the 10,559 coseismic landslides triggered by the Ludian earthquake and evaluating the seismic landslide development rate, the results were found to be consistent with reality. The improved model better reflects the control of excess topography and rock mechanics properties on the development of earthquake landslide hazards on high steep slopes. Identifying high-risk seismic landslide areas through this method and taking corresponding preventive and protective measures can help plan and construct safer hydropower and other infrastructure, thereby enhancing their disaster resistance.

Funder

National Nonprofit Fundamental Research Grant of China, Institute of Geology, China Earthquake Administration

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3