Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field

Author:

Klinger CarolinORCID,Mayer BernhardORCID,Jakub FabianORCID,Zinner Tobias,Park Seung-BuORCID,Gentine Pierre

Abstract

Abstract. We investigate the effects of thermal radiation on cloud development in large-eddy simulations (LESs) with the UCLA-LES model. We investigate single convective clouds (driven by a warm bubble) at 50 m horizontal resolution and a large cumulus cloud field at 50 and 100 m horizontal resolutions. We compare the newly developed 3-D Neighboring Column Approximation with the independent column approximation and a simulation without radiation and their respective impact on clouds. Thermal radiation causes strong local cooling at cloud tops accompanied by a modest warming at the cloud bottom and, in the case of the 3-D scheme, also cloud side cooling. 3-D thermal radiation causes systematically larger cooling when averaged over the model domain. In order to investigate the effects of local cooling on the clouds and to separate these local effects from a systematically larger cooling effect in the modeling domain, we apply the radiative transfer solutions in different ways. The direct effect of heating and cooling at the clouds is applied (local thermal radiation) in a first simulation. Furthermore, a horizontal average of the 1-D and 3-D radiation in each layer is used to study the effect of local cloud radiation as opposed to the domain-averaged effect. These averaged radiation simulations exhibit a cooling profile with stronger cooling in the cloudy layers. In a final setup, we replace the radiation simulation by a uniform cooling of 2.6 K day−1. To focus on the radiation effects themselves and to avoid possible feedbacks, we fixed surface fluxes of latent and sensible heat and omitted the formation of rain in our simulations. Local thermal radiation changes cloud circulation in the single cloud simulations, as well as in the shallow cumulus cloud field, by causing stronger updrafts and stronger subsiding shells. In our cumulus cloud field simulation, we find that local radiation enhances the circulation compared to the averaged radiation applications. In addition, we find that thermal radiation triggers the organization of clouds in two different ways. First, local interactive radiation leads to the formation of cell structures; later on, larger clouds develop. Comparing the effects of 3-D and 1-D thermal radiation, we find that organization effects of 3-D local thermal radiation are usually stronger than the 1-D counterpart. Horizontally averaged radiation causes more clouds and deeper clouds than a no radiation simulation but, in general less-organized clouds than in the local radiation simulations. Applying a constant cooling to the simulations leads to a similar development of the cloud field as in the case of averaged radiation, but less water condenses overall in the simulation. Generally, clouds contain more liquid water if radiation is accounted for. Furthermore, thermal radiation enhances turbulence and mixing as well as the size and lifetime of clouds. Local thermal radiation produces larger clouds with longer lifetimes. The cloud fields in the 100 and 50 m resolution simulations develop similarly; however, 3-D local effects are stronger in the 100 m simulations which might indicate a limit of our 3-D radiation parameterization.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3