A dynamic approach to three-dimensional radiative transfer in subkilometer-scale numerical weather prediction models: the dynamic TenStream solver v1.0

Author:

Maier Richard,Jakub FabianORCID,Emde ClaudiaORCID,Manev Mihail,Voigt AikoORCID,Mayer BernhardORCID

Abstract

Abstract. The increasing resolution of numerical weather prediction models makes inter-column three-dimensional (3D) radiative transport more and more important. However, 3D radiative-transfer solvers are still computationally expensive, largely preventing their use in operational weather forecasting. To address this issue, Jakub and Mayer (2015) developed the TenStream solver. It extends the well-established two-stream method to three dimensions by using 10 instead of 2 streams to describe the transport of radiative energy through Earth's atmosphere. Building upon this method, this paper presents the dynamic TenStream solver, which provides a further acceleration of the original TenStream model. Compared to traditional solvers, this speedup is achieved by utilizing two main concepts. First, radiation is not calculated from scratch every time the model is called. Instead, a time-stepping scheme is introduced to update the radiation field, based on the result from the previous radiation time step. Secondly, the model is based on incomplete solves, with just the first few steps of an iterative scheme towards convergence performed every time it is called. Essentially, the model thereby just uses the ingoing fluxes of a grid box to update its outgoing fluxes. Combined, these two approaches move radiative transfer much closer to the way advection is handled in the dynamical core of a numerical weather prediction (NWP) model, as both use previously calculated results to update their variables and thereby just require access to the neighboring values of an individual grid box, facilitating model parallelization. To demonstrate the feasibility of this new solver, we apply it to a precomputed shallow-cumulus-cloud time series and test its performance in terms of both speed and accuracy. In terms of speed, the dynamic TenStream solver is shown to be about 3 times slower than a traditional 1D δ-Eddington approximation but noticeably faster than currently available 3D solvers. To evaluate the accuracy of the dynamic TenStream solver, we compare its results as well as calculations carried out using a 1D δ-Eddington approximation and the original TenStream solver, to benchmark calculations performed with the 3D Monte Carlo solver MYSTIC. We demonstrate that at the grid box level, dynamic TenStream is able to calculate heating rates and net irradiances at domain boundaries that are very close to those obtained by the original TenStream solver, thus offering a much better representation of the MYSTIC benchmark than the 1D δ-Eddington results. By calling the dynamic TenStream solver less frequently than the δ-Eddington approximation, we furthermore show that our new solver produces significantly better results than a 1D δ-Eddington approximation carried out with a similar computational demand. At these lower calling frequencies, however, the incomplete solves in the dynamic TenStream solver also lead to a buildup of bias with time, which becomes larger the lower the calling frequency is.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Copernicus GmbH

Reference40 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3