Optimized Wavelength Sampling for Thermal Radiative Transfer in Numerical Weather Prediction Models

Author:

de Mourgues Michael1,Emde Claudia12,Mayer Bernhard12

Affiliation:

1. Meteorologisches Institut, Ludwig-Maximilians-Universität (LMU), 80333 Munich, Germany

2. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, 82234 Weßling, Germany

Abstract

In the thermal spectral range, there are millions of individual absorption lines of water vapor, CO2, and other trace gases. Radiative transfer calculations of wavelength-integrated quantities, such as irradiance and heating rate, are computationally expensive, requiring a high spectral resolution for accurate numerical weather prediction and climate modeling. This paper introduces a method that could highly reduce the cost of integration in the thermal spectrum by employing an optimized wavelength sampling method. Absorption optical thicknesses for various trace gases were calculated from the HITRAN 2012 spectroscopic dataset using the ARTS line-by-line model as input to a fast Schwarzschild radiative transfer model. Using a simulated annealing algorithm, different optimized sets of wavelengths and corresponding weights were identified, which allowed for accurate integrated quantities to be computed as a weighted sum, reducing the computational time by several orders of magnitude. For each set of wavelengths, a lookup table, including the corresponding weights and absorption cross-sections, is created and can be applied to any atmospheric setups for which it was trained. We applied the lookup table to calculate irradiances and heating rates for a large set of atmospheric profiles from the ECMWF 91-level short-range forecast. Ten wavelength nodes are sufficient to obtain irradiances within an average root mean square error (RMSE) of upward and downward radiation at any height below 1 Wm−2 while 100 wavelengths allowed for an RSME of below 0.05 Wm−2. The applicability of this method was confirmed for irradiances and heating rates in clear conditions and for an exemplary cloud at 3.2 km height. Representative spectral gridpoints for integrated quantities in the thermal spectrum (REPINT) is available as absorption parameterization in the libRadtran radiative transfer package, where it can be used as an efficient molecular absorption parameterization for a variety of radiative transfer solvers.

Funder

German Research Foundation

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3