Abstract
Abstract. The coverage of regional ionosphere maps is determined by the
distribution of ground-based monitoring stations, e.g., GNSS receivers. Since
ionospheric delay has a high spatial correlation, ionosphere map coverage
can be extended using spatial extrapolation methods. This paper proposes a
support vector machine (SVM) to extrapolate the ionosphere map data with
solar and geomagnetic parameters. One year of IGS ionospheric delay map data
over South Korea is used to train the SVM algorithm. Subsequently, 1 month
of ionospheric delay data outside the input data region is estimated. In
addition to solar and geomagnetic environmental parameters, the ionospheric
delay data from the inner data region are used to estimate the ionospheric
delay data for the outside region. The accuracy evaluation is performed at
three levels of range −5, 10, and 15∘
outside the inner data regions. The extrapolation errors are 0.33 TECU (total electron content unit) for
the 5∘ region and 1.95 TECU for the 15∘ region. These
values are substantially lower than the GPS Klobuchar model error values.
Comparison with another machine learning extrapolation method, the neural
network, shows a substantial improvement of up to 26.7 %.
Subject
Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geology,Astronomy and Astrophysics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献