Visual simultaneous localization and mapping (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes

Author:

Chen Mengyuan,Guo Hangrong,Qian Runbang,Gong Guangqiang,Cheng Hao

Abstract

Abstract. Identifying dynamic objects in dynamic scenes remains a challenge for traditional simultaneous localization and mapping (SLAM) algorithms. Additionally, these algorithms are not able to adequately inpaint the culling regions that result from excluding dynamic objects. In light of these challenges, this study proposes a novel visual SLAM (vSLAM) algorithm based on improved Vision Transformer semantic segmentation in dynamic scenes (VTD-SLAM), which leverages an improved Vision Transformer semantic segmentation technique to address these limitations. Specifically, VTD-SLAM utilizes a residual dual-pyramid backbone network to extract dynamic object region features and a multiclass feature transformer segmentation module to enhance the pixel weight of potential dynamic objects and to improve global semantic information for precise identification of potential dynamic objects. The method of multi-view geometry is applied to judge and remove the dynamic objects. Meanwhile, according to static information in the adjacent frames, the optimal nearest-neighbor pixel-matching method is applied to restore the static background, where the feature points are extracted for pose estimation. With validation in the public dataset TUM (The Entrepreneurial University Dataset) and real scenarios, the experimental results show that the root-mean-square error of the algorithm is reduced by 17.1 % compared with dynamic SLAM (DynaSLAM), which shows better map composition capability.

Publisher

Copernicus GmbH

Subject

Industrial and Manufacturing Engineering,Fluid Flow and Transfer Processes,Mechanical Engineering,Mechanics of Materials,Civil and Structural Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3