The Amazon Tall Tower Observatory (ATTO) in the remote Amazon Basin: overview of first results from ecosystem ecology, meteorology, trace gas, and aerosol measurements
Author:
Andreae M. O.ORCID, Acevedo O. C., Araùjo A., Artaxo P.ORCID, Barbosa C. G. G.ORCID, Barbosa H. M. J., Brito J.ORCID, Carbone S., Chi X., Cintra B. B. L., da Silva N. F., Dias N. L.ORCID, Dias-Júnior C. Q.ORCID, Ditas F.ORCID, Ditz R., Godoi A. F. L., Godoi R. H. M., Heimann M.ORCID, Hoffmann T., Kesselmeier J.ORCID, Könemann T., Krüger M. L., Lavric J. V.ORCID, Manzi A. O., Moran-Zuloaga D., Nölscher A. C.ORCID, Santos Nogueira D., Piedade M. T. F., Pöhlker C.ORCID, Pöschl U.ORCID, Rizzo L. V., Ro C.-U., Ruckteschler N., Sá L. D. A., Sá M. D. O., Sales C. B., Santos R. M. N. D., Saturno J.ORCID, Schöngart J., Sörgel M.ORCID, de Souza C. M., de Souza R. A. F., Su H.ORCID, Targhetta N., Tóta J., Trebs I., Trumbore S.ORCID, van Eijck A., Walter D.ORCID, Wang Z., Weber B.ORCID, Williams J., Winderlich J., Wittmann F., Wolff S.ORCID, Yáñez-Serrano A. M.ORCID
Abstract
Abstract. The Amazon Basin plays key roles in the carbon and water cycles, climate change, atmospheric chemistry, and biodiversity. It already has been changed significantly by human activities, and more pervasive change is expected to occur in the next decades. It is therefore essential to establish long-term measurement sites that provide a baseline record of present-day climatic, biogeochemical, and atmospheric conditions and that will be operated over coming decades to monitor change in the Amazon region as human perturbations increase in the future. The Amazon Tall Tower Observatory (ATTO) has been set up in a pristine rain forest region in the central Amazon Basin, about 150 km northeast of the city of Manaus. An ecological survey including a biodiversity assessment has been conducted in the forest region surrounding the site. Two 80 m towers have been operated at the site since 2012, and a 325 m tower is nearing completion in mid-2015. Measurements of micrometeorological and atmospheric chemical variables were initiated in 2012, and their range has continued to broaden over the last few years. The meteorological and micrometeorological measurements include temperature and wind profiles, precipitation, water and energy fluxes, turbulence components, soil temperature profiles and soil heat fluxes, radiation fluxes, and visibility. A tree has been instrumented to measure stem profiles of temperature, light intensity, and water content in cryptogamic covers. The trace gas measurements comprise continuous monitoring of carbon dioxide, carbon monoxide, methane, and ozone at 5 to 8 different heights, complemented by a variety of additional species measured during intensive campaigns (e.g., VOC, NO, NO2, and OH reactivity). Aerosol optical, microphysical, and chemical measurements are made above the canopy as well as in the canopy space. They include light scattering and absorption, aerosol fluorescence, number and volume size distributions, chemical composition, cloud condensation nuclei (CCN) concentrations, and hygroscopicity. Initial results from ecological, meteorological, and chemical studies at the ATTO site are presented in this paper.
Publisher
Copernicus GmbH
Reference206 articles.
1. Abril, G., Martinez, J. M., Artigas, L. F., Moreira-Turcq, P., Benedetti, M. F., Vidal, L., Meziane, T., Kim, J. H., Bernardes, M. C., Savoye, N., Deborde, J., Souza, E. L., Alberic, P., de Souza, M. F. L., and Roland, F.: Amazon River carbon dioxide outgassing fuelled by wetlands, Nature, 505, 395–398, https://doi.org/10.1038/nature12797, 2014. 2. Acevedo, O. C., Costa, F. D., Oliveira, P. E. S., Puhales, F. S., Degrazia, G. A., and Roberti, D. R.: The influence of submeso processes on stable boundary layer similarity relationships, J. Atmos. Sci., 71, 207–225, https://doi.org/10.1175/jas-d-13-0131.1, 2014. 3. Alfarra, M. R., Paulsen, D., Gysel, M., Garforth, A. A., Dommen, J., Prévôt, A. S. H., Worsnop, D. R., Baltensperger, U., and Coe, H.: A mass spectrometric study of secondary organic aerosols formed from the photooxidation of anthropogenic and biogenic precursors in a reaction chamber, Atmos. Chem. Phys., 6, 5279–5293, https://doi.org/10.5194/acp-6-5279-2006, 2006. 4. Allan, J. D., Delia, A. E., Coe, H., Bower, K. N., Alfarra, M. R., Jimenez, J. L., Middlebrook, A. M., Drewnick, F., Onasch, T. B., Canagaratna, M. R., Jayne, J. T., and Worsnop, D. R.: A generalised method for the extraction of chemically resolved mass spectra from aerodyne aerosol mass spectrometer data, J. Aerosol Sci., 35, 909–922, https://doi.org/10.1016/j.jaerosci.2004.02.007, 2004. 5. Anderson, T. L. and Ogren, J. A.: Determining aerosol radiative properties using the TSI 3563 integrating nephelometer, Aerosol Sci. Tech., 29, 57–69, 1998.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|