Size-resolved measurements of ice nucleating particles at six locations in North America and one in Europe

Author:

Mason R. H.,Si M.ORCID,Chou C.,Irish V. E.,Dickie R.,Elizondo P.,Wong R.,Brintnell M.,Elsasser M.,Lassar W. M.,Pierce K. M.,Leaitch W. R.,MacDonald A. M.,Platt A.,Toom-Sauntry D.,Sarda-Estève R.,Schiller C. L.,Suski K. J.ORCID,Hill T. C. J.ORCID,Abbatt J. P. D.ORCID,Huffman J. A.ORCID,DeMott P. J.,Bertram A. K.ORCID

Abstract

Abstract. Detailed information on the size of ice nucleating particles (INPs) may be useful in source identification, modeling their transport in the atmosphere to improve climate predictions, and determining how effectively or ineffectively instrumentation used for quantifying INPs in the atmosphere captures the full INP population. In this study we report immersion-mode INP number concentrations as a function of size at six ground sites in North America and one in Europe. The lowest INP number concentrations were observed at Arctic and alpine locations and the highest at suburban and agricultural locations, consistent with previous studies of INP concentrations in similar environments. We found that 91, 79, and 63 % of INPs had an aerodynamic diameter > 1 μm at ice activation temperatures of −15, −20, and −25 °C, respectively, when averaging over all sampling locations. In addition, 62, 55, and 42 % of INPs were in the coarse mode (> 2.5 μm) at ice activation temperatures of −15, −20, and −25 °C, respectively, when averaging over all sampling locations. These results are consistent with six out of the seven studies in the literature that have focused on the size distribution of INPs in the atmosphere. Taken together, these findings strongly suggest that supermicron and coarse mode aerosol particles are a significant component of the ice nuclei population in many different ground-level environments. Further size-resolved studies of INPs as a function of altitude are required.

Publisher

Copernicus GmbH

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Altitude Test Facility Humidity Control to Generate Defined Icing Conditions;Journal of Engineering for Gas Turbines and Power;2020-01-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3