Ground-based measurements of immersion freezing in the eastern Mediterranean

Author:

Ardon-Dryer K.,Levin Z.ORCID

Abstract

Abstract. Ice nuclei were measured in immersion-freezing mode in the eastern Mediterranean region using the FRIDGE-TAU (FRankfurt Ice-nuclei Deposition freezinG Experiment, the Tel Aviv University version) chamber. Aerosol particles were sampled during dust storms and on clean and polluted days (e.g., Lag BaOmer). The aerosol immersion-freezing potential was analyzed in the laboratory using a drop-freezing method. Droplets from all the samples were found to freeze between −11.8 °C and −28.9 °C. Immersion-freezing nuclei (FN) concentrations range between 0.16 L−1 and 234 L−1, while the activated fraction (AF) ranges between 8.7 × 10−8 and 4.9 × 10−4. The median temperature at which the drops from each filter froze was found to be correlated with the corresponding daily average of PM10, PM2.5 and PM10–PM2.5. A higher correlation value between FN concentrations and PM10–PM2.5 suggests that the larger particles are generally more effective as FN. The measurements were divided into dust storms and "clean" conditions (this is a relative term, because dust particles are always present in the atmosphere is this region) based on the air mass back trajectories and the aerosol mass concentrations (PM10). Droplets containing ambient particles from dust storm days froze at higher temperatures than droplets containing particles from clean days. Statistically significant differences were found between dust storms and clean conditions primarily in terms of the initial temperature at which the first drops froze, the median freezing temperature and the aerosol loading (PM values). FN concentrations and AF values in dust storms were larger by more than a factor of 2 than in the clean conditions. This observation agrees with previous studies showing that some dust particles are almost always present in the atmosphere in this region. Measurements of aerosol particles emitted from wood burning bonfires during a Lag BaOmer holiday showed that although a high concentration of particles was emitted, those particles' effectiveness as FN was relatively poor. The most likely reason for the low FN efficiency is the combination of relatively low fire temperatures and high organic carbon fraction in the aerosols.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3