Using O<sub>2</sub> to study the relationships between soil CO<sub>2</sub> efflux and soil respiration

Author:

Angert A.,Yakir D.,Rodeghiero M.,Preisler Y.ORCID,Davidson E. A.,Weiner T.

Abstract

Abstract. Soil respiration is the sum of respiration processes in the soil and is a major flux in the global carbon cycle. It is usually assumed that the CO2 efflux is equal to the soil respiration rate. Here we challenge this assumption by combining measurements of CO2 with high-precision measurements of O2. These measurements were conducted on different ecosystems and soil types and included measurements of air samples taken from the soil profile of three Mediterranean sites: a temperate forest and two alpine forests. Root-free soils from the alpine sites were also incubated in the lab. We found that the ratio between the CO2 efflux and the O2 influx (defined as apparent respiratory quotient, ARQ) was in the range of 0.14 to 1.23 and considerably deviated from the value of 0.9 ± 0.1 expected from the elemental composition of average plants and soil organic matter. At the Mediterranean sites, these deviations are explained as a result of CO2 dissolution in the soil water and transformation to bicarbonate ions in these high-pH soils, as well as by carbonate mineral dissolution and precipitation processes. Thus, a correct estimate of the short-term, chamber-based biological respiratory flux in such soils can only be made by dividing the measured soil CO2 efflux by the average (efflux-weighted) soil profile ARQ. Applying this approach to a semiarid pine forest resulted in an estimated short-term biological respiration rate that is 3.8 times higher than the chamber-measured surface CO2. The ARQ values often observed in the more acidic soils were unexpectedly low (< 0.7). These values probably result from the oxidation of reduced iron, which has been formed previously during times of high soil moisture and local anaerobic conditions inside soil aggregates. The results reported here provide direct quantitative evidence of a large temporal decoupling between soil–gas exchange fluxes and biological soil respiration.

Funder

German-Israeli Foundation for Scientific Research and Development

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3