Separating above-canopy CO2 and O2 measurements into their atmospheric and biospheric signatures

Author:

Faassen Kim A. P.ORCID,Vilà-Guerau de Arellano JordiORCID,González-Armas RaquelORCID,Heusinkveld Bert G.ORCID,Mammarella IvanORCID,Peters WouterORCID,Luijkx Ingrid T.ORCID

Abstract

Abstract. Atmospheric tracers are often used to interpret the local CO2 budget, where measurements at a single height are assumed to represent local flux signatures. Alternatively, these signatures can be derived from direct flux measurements or by using fluxes derived from measurements at multiple heights. In this study, we contrast interpretation of surface CO2 exchange from tracer measurements at a single height to measurements at multiple heights. Specifically, we analyse the ratio between atmospheric O2 and CO2 (exchange ratio, ER) above a forest. We consider the following two alternative approaches: the exchange ratio of the forest (ERforest) obtained from the ratio of the surface fluxes of O2 and CO2 derived from measurements at multiple heights, and the exchange ratio of the atmosphere (ERatmos) obtained from changes in the O2 and CO2 mole fractions over time measured at a single height. We investigate the diurnal cycle of both ER signals to better understand the biophysical meaning of the ERatmos signal. We have combined CO2 and O2 measurements from Hyytiälä, Finland, during spring and summer of 2018 and 2019 with a conceptual land–atmosphere model to investigate the behaviour of ERatmos and ERforest. We show that the CO2 and O2 signals as well as their resulting ERs are influenced by climate conditions such as variations in soil moisture and temperature, for example during the 2018 heatwave. We furthermore show that the ERatmos signal obtained from single-height measurements rarely represents the forest exchange directly, mainly because it is influenced by entrainment of air from the free troposphere into the atmospheric boundary layer. The influence of these larger-scale processes can lead to very high ERatmos values (even larger than 2), especially in the early morning. These high values do not directly represent carbon cycle processes, but are rather a mixture of different signals. We conclude that the ERatmos signal provides only a weak constraint on local-scale surface CO2 exchange, and that ERforest above the canopy should be used instead. Single-height measurements always require careful selection of the time of day and should be combined with atmospheric modelling to yield a meaningful representation of forest carbon exchange. More generally, we recommend always measuring at multiple heights when using multi-tracer measurements to study surface CO2 exchange.

Funder

Aard- en Levenswetenschappen, Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3