Testing the consistency between changes in simulated climate and Alpine glacier length over the past millennium

Author:

Goosse HuguesORCID,Barriat Pierre-Yves,Dalaiden Quentin,Klein François,Marzeion BenORCID,Maussion FabienORCID,Pelucchi Paolo,Vlug AnoukORCID

Abstract

Abstract. It is standard to compare climate model results covering the past millennium and reconstructions based on various archives in order to test the ability of models to reproduce the observed climate variability. Up to now, glacier length fluctuations have not been used systematically in this framework even though they offer information on multi-decadal to centennial variations complementary to other records. One reason is that glacier length depends on several complex factors and so cannot be directly linked to the simulated climate. However, climate model skill can be measured by comparing the glacier length computed by a glacier model driven by simulated temperature and precipitation to observed glacier length variations. This is done here using the version 1.0 of the Open Global Glacier Model (OGGM) forced by fields derived from a range of simulations performed with global climate models over the past millennium. The glacier model is applied to a set of Alpine glaciers for which observations cover at least the 20th century. The observed glacier length fluctuations are generally well within the range of the simulations driven by the various climate model results, showing a general consistency with this ensemble of simulations. Sensitivity experiments indicate that the results are much more sensitive to the simulated climate than to OGGM parameters. This confirms that the simulations of glacier length can be used to evaluate the climate model performance, in particular the simulated summer temperatures that largely control the glacier changes in our region of interest. Simulated glacier length is strongly influenced by the internal variability in the system, putting limitations on the model–data comparison for some variables like the trends over the 20th century in the Alps. Nevertheless, comparison of glacier length fluctuations on longer timescales, for instance between the 18th century and the late 20th century, appear less influenced by the natural variability and indicate clear differences in the behaviour of the various climate models.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3