Timing and climatic-driven mechanisms of glacier advances in Bhutanese Himalaya during the Little Ice Age

Author:

Yang Weilin,Li Yingkui,Liu Gengnian,Chu Wenchao

Abstract

Abstract. Mountain glaciers provide us a window into past climate changes and landscape evolution, but the pattern of glacier evolution at centennial or suborbital timescale remains elusive, especially in monsoonal Himalayas. We simulated the glacier evolution in Bhutanese Himalaya (BH), a typical monsoon-influenced region, during the Little Ice Age (LIA) using the Open Global Glacier Model driven by six paleoclimate datasets and their average. Compared with geomorphologically mapped glacial landforms, the model can well capture the patterns of glacier length change. Simulation results revealed four glacial substages (the 1270s, 1470s, 1710s, and 1850s) during LIA in the study area. Statistically, a positive correlation between the number of glacial substages and glacier slope was found, indicating that the occurrence of glacial substages might be a result from heterogeneous responses of glaciers to climate change. Monthly climate change analysis and sensitivity experiments indicated that the summer temperature largely dominates the regional glacier evolution during the LIA in BH.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3