Background albedo dynamics improve simulated precipitation variability in the Sahel region

Author:

Vamborg F. S. E.,Brovkin V.ORCID,Claussen M.ORCID

Abstract

Abstract. Using the general circulation model ECHAM5–JSBACH forced by observed sea surface temperatures (SSTs) for the 20th century, we investigate the role of vegetation and land surface albedo dynamics in shaping rainfall variability in the Sahel. We use two different land surface albedo schemes, one in which the albedo of the canopy is varying and one in which the albedo changes of the surface below the canopy are also taken into account. The SST forcing provides the background for simulating the observed decadal signal in Sahelian rainfall, though the response to SST forcing only is not strong enough to fully capture the observed signal. The introduction of dynamic vegetation leads to an increase in interannual variability of the rainfall, and gives rise to an increased number of high-amplitude rainfall anomaly events. The dynamic background albedo leads to an increased persistence of the rainfall anomalies. The increase in persistence means that the difference between the dry and the wet decades is increased compared to the other simulations, and thus more closely matching the observed absolute change between these two periods. These results highlight the need for a consistent representation of land surface albedo dynamics for capturing the full extent of rainfall anomalies in the Sahel.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3