Background albedo dynamics improve simulated precipitation variability in the Sahel region
-
Published:2014-02-05
Issue:1
Volume:5
Page:89-101
-
ISSN:2190-4987
-
Container-title:Earth System Dynamics
-
language:en
-
Short-container-title:Earth Syst. Dynam.
Author:
Vamborg F. S. E., Brovkin V.ORCID, Claussen M.ORCID
Abstract
Abstract. Using the general circulation model ECHAM5–JSBACH forced by observed sea surface temperatures (SSTs) for the 20th century, we investigate the role of vegetation and land surface albedo dynamics in shaping rainfall variability in the Sahel. We use two different land surface albedo schemes, one in which the albedo of the canopy is varying and one in which the albedo changes of the surface below the canopy are also taken into account. The SST forcing provides the background for simulating the observed decadal signal in Sahelian rainfall, though the response to SST forcing only is not strong enough to fully capture the observed signal. The introduction of dynamic vegetation leads to an increase in interannual variability of the rainfall, and gives rise to an increased number of high-amplitude rainfall anomaly events. The dynamic background albedo leads to an increased persistence of the rainfall anomalies. The increase in persistence means that the difference between the dry and the wet decades is increased compared to the other simulations, and thus more closely matching the observed absolute change between these two periods. These results highlight the need for a consistent representation of land surface albedo dynamics for capturing the full extent of rainfall anomalies in the Sahel.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference48 articles.
1. Ackerley, D., Booth, B. B. B., Knight, S. H. E., Highwood, E. J., Frame, D. J., Allen, M. R., and Rowell, D. P.: Sensitivity of Twentieth-Century Sahel Rainfall to Sulfate Aerosol and CO2 Forcing, J. Climate, 24, 4999–5014, https://doi.org/10.1175/JCLI-D-11-00019.1, 2011. 2. Biasutti, M. and Giannini, A.: Robust Sahel drying in response to late 20th century forcings, Geophys. Res. Lett., 33, L11706, https://doi.org/10.1029/2006GL026067, 2006. 3. Bonan, G.: Ecological Climatology, 2nd Edn., Cambridge University Press, 550 pp., 2008. 4. Booth, B. B. B., Dunstone, N. J., Halloran, P. R., Andrews, T., and Bellouin, N.: Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability, Nature, 484, 228–232, https://doi.org/10.1038/nature10946, 2012. 5. Brovkin, V., Claussen, M., Petoukhov, V., and Ganopolski, A.: On the stability of the atmosphere-vegetation system in the Sahara/Sahel region, J. Geophys. Res.-Atmos., 103, 31613–31624, 1998.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|