Sensitivity of Twentieth-Century Sahel Rainfall to Sulfate Aerosol and CO2 Forcing

Author:

Ackerley Duncan1,Booth Ben B. B.2,Knight Sylvia H. E.3,Highwood Eleanor J.1,Frame David J.4,Allen Myles R.5,Rowell David P.2

Affiliation:

1. Department of Meteorology, University of Reading, Reading, United Kingdom

2. Met Office Hadley Centre, Exeter, United Kingdom

3. Department of Earth Sciences, The Open University, Milton Keynes, United Kingdom

4. Smith School of Enterprise and the Environment, University of Oxford, Oxford, United Kingdom

5. Department of Physics, University of Oxford, Oxford, United Kingdom

Abstract

A full understanding of the causes of the severe drought seen in the Sahel in the latter part of the twentieth-century remains elusive some 25 yr after the height of the event. Previous studies have suggested that this drying trend may be explained by either decadal modes of natural variability or by human-driven emissions (primarily aerosols), but these studies lacked a sufficiently large number of models to attribute one cause over the other. In this paper, signatures of both aerosol and greenhouse gas changes on Sahel rainfall are illustrated. These idealized responses are used to interpret the results of historical Sahel rainfall changes from two very large ensembles of fully coupled climate models, which both sample uncertainties arising from internal variability and model formulation. The sizes of these ensembles enable the relative role of human-driven changes and natural variability on historic Sahel rainfall to be assessed. The paper demonstrates that historic aerosol changes are likely to explain most of the underlying 1940–80 drying signal and a notable proportion of the more pronounced 1950–80 drying.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3