Budget of nitrous acid (HONO) at an urban site in the fall season of Guangzhou, China

Author:

Yu Yihang,Cheng PengORCID,Li Huirong,Yang Wenda,Han Baobin,Song Wei,Hu WeiweiORCID,Wang XinmingORCID,Yuan BinORCID,Shao Min,Huang Zhijiong,Li Zhen,Zheng Junyu,Wang HaichaoORCID,Yu Xiaofang

Abstract

Abstract. High concentrations of nitrous acid (HONO) have been observed in the Pearl River Delta (PRD) region of China in recent years, contributing to an elevated atmospheric oxidation capacity due to the production of OH through HONO photolysis. We investigated the budget of HONO at an urban site in Guangzhou from 27 September to 9 November 2018 using data from a comprehensive atmospheric observation campaign. During this period, measured concentrations of HONO were 0.02 to 4.43 ppbv, with an average of 0.74 ± 0.70 ppbv. An emission ratio (HONO/NOx) of 0.9 ± 0.4 % was derived from 11 fresh plumes. The primary emission rate of HONO at night was calculated to be between 0.04 ± 0.02 and 0.30 ± 0.15 ppbv h−1 based on a high-resolution NOx emission inventory. Heterogeneous conversion of NO2 on the ground surface (0.27 ± 0.13 ppbv h−1), primary emissions from vehicle exhaust (between 0.04 ± 0.02 and 0.30 ± 0.15 ppbv h−1, with a middle value of 0.16 ± 0.07 ppbv h−1), and the homogeneous reaction of NO + OH (0.14 ± 0.30 ppbv h−1) were found to be the three largest sources of HONO at night. Heterogeneous NO2 conversion on aerosol surfaces (0.03 ± 0.02 ppbv h−1) and soil emission (0.019 ± 0.009 ppbv h−1) were two other minor sources. Correlation analysis shows that NH3 and the relative humidity (RH) may have participated in the heterogeneous transformation of NO2 to HONO at night. Dry deposition (0.41 ± 0.31 ppbv h−1) was the main removal process of HONO at night, followed by dilution (0.18 ± 0.16 ppbv h−1), while HONO loss at aerosol surfaces was much slower (0.008 ± 0.006 ppbv h−1). In the daytime, the average primary emission Pemis was 0.12 ± 0.02 ppbv h−1, and the homogeneous reaction POH+NO was 0.79 ± 0.61 ppbv h−1, larger than the unknown source PUnknown (0.65 ± 0.46 ppbv h−1). Similar to previous studies, PUnknown appeared to be related to the photo-enhanced conversion of NO2. Our results show that primary emissions and the reaction of NO + OH can significantly affect HONO at a site with intensive emissions during both the daytime and nighttime. Uncertainty in parameter values assumed in the calculation of HONO sources can have a strong impact on the relative importance of HONO sources at night, and could be reduced by improving knowledge of key parameters such as the NO2 uptake coefficient. The uncertainty in the estimated direct emission can be reduced by using emission data with higher resolution and quality. Our study highlights the importance of better constraining both conventional and novel HONO sources by reducing uncertainties in their key parameters for advancing our knowledge of this important source of atmospheric OH.

Funder

National Key Research and Development Program of China

Natural Science Foundation of Guangdong Province for Distinguished Young Scholars

Guangdong Innovative and Entrepreneurial Research Team Program

Special Fund Project for Science and Technology Innovation Strategy of Guangdong Province

Science and Technology Planning Project of Guangdong Province

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3