Nitrous acid budgets in the coastal atmosphere: potential daytime marine sources

Author:

Zhong Xuelian,Shen Hengqing,Zhao Min,Zhang Ji,Sun Yue,Liu Yuhong,Zhang Yingnan,Shan YeORCID,Li Hongyong,Mu Jiangshan,Yang Yu,Nie Yanqiu,Tang Jinghao,Dong Can,Wang XinfengORCID,Zhu Yujiao,Guo Mingzhi,Wang Wenxing,Xue Likun

Abstract

Abstract. Nitrous acid (HONO), a vital precursor of atmospheric hydroxyl radicals (OH), has been extensively investigated to understand its characteristics and formation mechanisms. However, discerning fundamental mechanisms across diverse environments remains challenging. This study utilizes measurements from Mount Lao, a coastal mountain in eastern China, and an observation-based chemical box model (OBM) to examine HONO budgets and their subsequent impacts on atmospheric oxidizing capacity. The model incorporates additional HONO sources, including direct emissions, heterogeneous conversions of NO2 on aerosol and ground surfaces, and particulate nitrate photolysis. The observed mean HONO concentration was 0.46 ± 0.37 ppbv. The updated model reproduced daytime HONO concentrations well during dust and photochemical pollution events. During dust events, daytime HONO formation was dominated by photo-enhanced heterogeneous reactions of NO2 on aerosol surfaces (> 50 %), whereas particulate nitrate photolysis (34 %) prevailed during photochemical pollution events. Nevertheless, the model uncovers a significant unidentified marine HONO source in a “sea case”, with its HONO production rate reaching up to 0.70 ppbv h−1 at noon. Without considering this unidentified source, an extraordinarily high photolysis coefficient of nitrate and/or a heterogeneous uptake coefficient of NO2 would be required to match observed HONO concentrations. This missing marine HONO source affected the peak O3 production rate and OH radical concentration by 36 % and 28 %, respectively, at the observation site. Given the limited HONO observation data in coastal and marine settings, the unidentified HONO source may cause an underestimation of the atmosphere's oxidizing capacity. This study highlights the necessity for further investigation of the role of HONO in atmospheric chemistry in coastal and marine environments.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3