Dramatic changes in atmospheric pollution source contributions for a coastal megacity in northern China from 2011 to 2020

Author:

Liu Baoshuang,Wang Yanyang,Meng He,Dai Qili,Diao Liuli,Wu Jianhui,Shi Laiyuan,Wang Jing,Zhang Yufen,Feng Yinchang

Abstract

Abstract. Understanding the effectiveness of long-term air pollution regulatory measures is important for control policy formulation. Efforts have been made using chemical transport modelling and statistical approaches to evaluate the efficacy of the Clean Air Action Plan (CAAP; 2013–2017) and the Blue Sky Protection Campaign (BSPC; 2018–2020) enacted in China. Changes in air quality due to reduction in emissions can be masked by meteorology, making it highly challenging to reveal the real effects of control measures. A knowledge gap still existed with respect to how sources changed before and after the CAAP and BSPC were implemented, respectively, particularly in coastal areas where anthropogenic emissions mixed with additional natural sources (e.g. marine aerosol). This work applied a machine-learning-based meteorological normalization approach to decouple the meteorological effects from air quality trend in a coastal city in northern China (Qingdao). Secondly, the relative changes in source contributions to ambient PM2.5 with a ∼ 10-year observation interval (2011–2012, 2016, and 2019) were also investigated. We discovered that the largest emission reduction section was likely from coal combustion as the meteorologically normalized SO2 dropped by ∼ 15.5 % yr−1, and the annual average dispersion-normalized SO42- decreased by ∼ 41.5 %. Change in the meteorologically normalized NO2 was relatively stable (∼ 1.0 % yr−1), and NO3- changed inappreciably in 2016–2019 but was significantly higher than that prior to the CAAP. Crustal dust decreased remarkably after the CAAP began. Industrial emissions, for example, steel-related smelting, decreased after 2016 due to the relocation of steel-making enterprises. Note that vehicle emissions were increased in importance as opposed to the other primary sources. Similar to other megacities, Qingdao is also at risk of increased ozone pollution that in turn facilitates secondary-particle formation in the future. The policy assessment approaches applied in this work also work for other places where air quality management is highly in demand to reduce air pollution.

Funder

China Postdoctoral Science Foundation

Tianjin Science and Technology Program

Fundamental Research Funds for the Central Universities

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3