Viscosity and physical state of sucrose mixed with ammonium sulfate droplets

Author:

Jeong Rani,Lilek JosephORCID,Zuend AndreasORCID,Xu Rongshuang,Chan Man Nin,Kim Dohyun,Moon Hi Gyu,Song Mijung

Abstract

Abstract. Although knowledge of the physical state of aerosol particles is essential to understand atmospheric chemistry model and measurements, information on the viscosity and physical state of aerosol particles consisting of organic and inorganic salts is still rare. Herein, we quantified viscosities at 293 ± 1 K upon dehydration for the binary systems, sucrose–H2O and ammonium sulfate (AS)–H2O, and the ternary systems, sucrose–AS–H2O for organic-to-inorganic dry mass ratios (OIRs) = 4:1, 1:1, and 1:4 using bead-mobility and poke-and-flow techniques. Based on the viscosity value of the aerosol particles, we defined the physical states of the total aerosol particles studied in this work. For binary systems, the viscosity of sucrose–H2O particles gradually increased from ∼ 4 × 10−1 to > ∼ 1 × 108 Pa s when the relative humidity (RH) decreased from ∼ 81 % to ∼ 24 %, ranging from liquid to semisolid or solid state, which agrees with previous studies. The viscosity of AS–H2O particles remained in the liquid state (< 102 Pa s) for RH > ∼ 50 %, while for RH ≤∼ 50 %, the particles showed a viscosity of > ∼ 1 × 1012 Pa s, corresponding to a solid state. In case of the ternary systems, the viscosity of organic-rich particles (OIR = 4:1) gradually increased from ∼ 1 × 10−1 to ∼ 1 × 108 Pa s for a RH decrease from ∼ 81 % to ∼ 18 %, similar to the binary sucrose–H2O particles. This indicates that the sucrose–AS–H2O particles range from liquid to semisolid or solid across the RH. In the ternary particles for OIR = 1:1, the viscosities ranged from less than ∼ 1 × 102 for RH > 34 % to > ∼ 1 × 108 Pa s at ∼ 27 % RH. The viscosities correspond to liquid for RH > ∼ 34 %, semisolid for ∼ 34 % < RH < ∼ 27 %, and semisolid or solid for RH < ∼ 27 %. Compared to the organic-rich particles, in the inorganic-rich particles (OIR = 1:4), drastic enhancement in viscosity was observed as RH decreased; the viscosity increased by approximately 8 orders of magnitude during a decrease in RH from 43 % to 25 %, resulting in liquid to semisolid or solid in the RH range. Overall, all particles studied in this work were observed to exist as a liquid, semisolid, or solid depending on the RH. Furthermore, we compared the measured viscosities of ternary systems with OIRs of 4:1, 1:1, and 1:4 to the predicted viscosities using the Aerosol Inorganic–Organic Mixtures Functional groups Activity Coefficients Viscosity model (AIOMFAC-VISC) predictions with the Zdanovskii–Stokes–Robinson (ZSR) organic–inorganic mixing model, with excellent model–measurement agreement for all OIRs.

Funder

National Research Foundation of Korea

Environment and Climate Change Canada

Alfred P. Sloan Foundation

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference73 articles.

1. Athanasiadis, A., Fitzgerald, C., Davidson, N. M., Giorio, C., Botchway, S. W., Ward, A. D., Kalberer, M., Pope, F. D., and Kuimova, M. K.: Dynamic viscosity mapping of the oxidation of squalene aerosol particles, Phys. Chem. Chem. Phys., 18, 30385–30393, https://doi.org/10.1039/C6CP05674A, 2016.

2. Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic influence on the semisolid-to-liquid transition of secondary organic materials, J. Phys. Chem. A, 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015.

3. Bateman, A. P., Gong, Z., Harder, T. H., de Sá, S. S., Wang, B., Castillo, P., China, S., Liu, Y., O'Brien, R. E., Palm, B. B., Shiu, H.-W., Cirino, G. G., Thalman, R., Adachi, K., Alexander, M. L., Artaxo, P., Bertram, A. K., Buseck, P. R., Gilles, M. K., Jimenez, J. L., Laskin, A., Manzi, A. O., Sedlacek, A., Souza, R. A. F., Wang, J., Zaveri, R., and Martin, S. T.: Anthropogenic influences on the physical state of submicron particulate matter over a tropical forest, Atmos. Chem. Phys., 17, 1759–1773, https://doi.org/10.5194/acp-17-1759-2017, 2017.

4. Berkemeier, T., Steimer, S. S., Krieger, U. K., Peter, T., Pöschl, U., Ammann, M., and Shiraiwa, M.: Ozone uptake on glassy, semi-solid and liquid organic matter and the role of reactive oxygen intermediates in atmospheric aerosol chemistry, Phys. Chem. Chem. Phys., 18, 12662–12674, https://doi.org/10.1039/C6CP00634E, 2016.

5. Bertram, A. K., Martin, S. T., Hanna, S. J., Smith, M. L., Bodsworth, A., Chen, Q., Kuwata, M., Liu, A., You, Y., and Zorn, S. R.: Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component, Atmos. Chem. Phys., 11, 10995–11006, https://doi.org/10.5194/acp-11-10995-2011, 2011.

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3