Predicting the relative humidities of liquid-liquid phase separation, efflorescence, and deliquescence of mixed particles of ammonium sulfate, organic material, and water using the organic-to-sulfate mass ratio of the particle and the oxygen-to-carbon elemental ratio of the organic component

Author:

Bertram A. K.,Martin S. T.,Hanna S. J.,Smith M. L.,Bodsworth A.,Chen Q.,Kuwata M.,Liu A.,You Y.,Zorn S. R.

Abstract

Abstract. Individual particles that on a mass basis consist dominantly of the components ammonium sulfate, oxygenated organic material, and water are a common class of submicron particles found in today's atmosphere. Here we use (1) the organic-to-sulfate (org:sulf) mass ratio of the overall particle and (2) the oxygen-to-carbon (O:C) elemental ratio of the organic component as input variables in parameterisations that predict the critical relative humidity of several different types of particle phase transitions. Specifically these variables were used to predict the critical relative humidity of liquid-liquid phase separation (SRH), efflorescence (ERH), and deliquescence (DRH). Experiments were conducted by optical microscopy for 11 different oxygenated organic-ammonium sulfate systems covering the range 0.1< org:sulf <12.8 and 0.29 < O:C < 1.33. These new data, in conjunction with other data already available in the literature, were used to develop the parameterisations SRH(org:sulf, O:C), ERH(org:sulf, O:C), and DRH(org:sulf, O:C). The parameterisations correctly predicted SRH within 15% RH for 88% of the measurements, ERH within 5% for 84% of the measurements, and DRH within 5% for 94% of the measurements. The applicability of the derived parameterisations beyond the training data set was tested against observations for organic-sulfate particles produced in an environmental chamber. The organic component consisted of secondary organic material produced by the oxidation of isoprene, α-pinene, and β-caryophyllene. The predictions of the parameterisations were also tested against data from the Southern Great Plains, Oklahoma, USA. The observed ERH and DRH values for both the chamber and field data agreed within 5% RH with the values predicted by the parameterisations using the measured org:sulf and O:C ratios as the input variables.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3