H<sub>2</sub>O and HCl trace gas kinetics on crystalline HCl hydrates and amorphous HCl / H<sub>2</sub>O in the range 170 to 205 K: the HCl / H<sub>2</sub>O phase diagram revisited

Author:

Iannarelli R.,Rossi M. J.ORCID

Abstract

Abstract. In this laboratory study, H2O ice films of 1 to 2 μm thickness have been used as surrogates for ice particles at atmospherically relevant conditions in a stirred flow reactor (SFR) to measure the kinetics of evaporation and condensation of HCl and H2O on crystalline and amorphous HCl hydrates. A multidiagnostic approach has been employed using Fourier transform infrared spectroscopy (FTIR) absorption in transmission to monitor the condensed phase and residual gas mass spectrometry (MS) for the gas phase. An average stoichiometric ratio of H2O : HCl = 5.8 ± 0.7 has been measured for HCl &amp;centerdot; 6H2O, and a mass balance ratio between HCl adsorbed onto ice and the quantity of HCl measured using FTIR absorption (Nin – Nesc – Nads) / NFTIR = 1.18 ± 0.12 has been obtained. The rate of evaporation Rev(HCl) for crystalline HCl hexahydrate (HCl &amp;centerdot; 6H2O) films and amorphous HCl / H2O mixtures has been found to be lower by a factor of 10 to 250 compared to Rev(H2O) in the overlapping temperature range 175 to 190 K. Variations of the accommodation coefficient α(HCl) on pure HCl &amp;centerdot; 6H2O up to a factor of 10 at nominally identical conditions have been observed. The kinetics (α, Rev) are thermochemically consistent with the corresponding equilibrium vapour pressure. In addition, we propose an extension of the HCl / H2O phase diagram of crystalline HCl &amp;centerdot; 6H2O based on the analysis of deconvoluted FTIR spectra of samples outside its known existence area. A brief evaluation of the atmospheric importance of both condensed phases – amorphous HCl / H2O and crystalline HCl &amp;centerdot; 6H2O – is performed in favour of the amorphous phase.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3