Insight into the effect of alkali treatment on enhancing adsorptivity of activated carbon for HCl removal in H2 feedstock

Author:

Usmani Anis,Watthaisong Panuwat,Grisdanurak Nurak,Suthirakun SuwitORCID

Abstract

AbstractThe removal of contaminated HCl gas in the petrochemical plants is essential to prevent corrosion problems, catalysts poisoning, and downstream contamination. Alkali-treated activated carbon (AC) was proposed as an effective adsorbent for HCl removal. Understanding the underlying mechanism of HCl adsorption on modified AC is key to design promising strategies for removal of HCl and other chlorinated hydrocarbon gases in the H2 feedstock. Here, a combined experimental and computational approach was used to study the role of alkali treatment on the adsorption behavior of HCl on the AC surfaces. We find that an interplay between alkali ions and oxygen-containing functional groups on the AC surface plays a crucial role in stabilizing the adsorbed HCl. The origin of such stable adsorbed configurations can be attributed to the dissociative adsorption of HCl leading to a formation of low energy species such as water, OH and Cl anions. These anions are electrostatically stabilized by the alkali ions resulting in a strong adsorption of −3.61 eV and −3.69 eV for Na+ and K+, respectively. Close investigation on charge analysis reveals that the epoxy functional group facilitates adsorbent-surface charge transfer where O and Cl atoms gain more charges of 0.37 e and 0.58 e which is in good correlation with the improved adsorption strength. The calculated results are consistence with the experimental observations that the Langmuir adsorptivity has been enhanced upon alkali modification. The maximum adsorption capacity of AC has been improved approximately by 4 times from 78.9 to 188.9 mg/g upon treatment.

Funder

Suranaree University of Technology

Publisher

Springer Science and Business Media LLC

Subject

Materials Chemistry,Industrial and Manufacturing Engineering,General Chemical Engineering,Biochemistry,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3