Comparison of mixed layer heights from airborne high spectral resolution lidar, ground-based measurements, and the WRF-Chem model during CalNex and CARES
-
Published:2014-06-05
Issue:11
Volume:14
Page:5547-5560
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Scarino A. J., Obland M. D., Fast J. D., Burton S. P., Ferrare R. A., Hostetler C. A., Berg L. K.ORCID, Lefer B.ORCID, Haman C., Hair J. W., Rogers R. R., Butler C., Cook A. L., Harper D. B.
Abstract
Abstract. The California Research at the Nexus of Air Quality and Climate Change (CalNex) and Carbonaceous Aerosol and Radiative Effects Study (CARES) field campaigns during May and June 2010 provided a data set appropriate for studying the structure of the atmospheric boundary layer (BL). The NASA Langley Research Center (LaRC) airborne high spectral resolution lidar (HSRL) was deployed to California onboard the NASA LaRC B-200 aircraft to aid in characterizing aerosol properties during these two field campaigns. Measurements of aerosol extinction (532 nm), backscatter (532 and 1064 nm), and depolarization (532 and 1064 nm) profiles during 31 flights, many in coordination with other research aircraft and ground sites, constitute a diverse data set for use in characterizing the spatial and temporal distribution of aerosols, as well as the depth and variability of the daytime mixed layer (ML) height. The paper describes the modified Haar wavelet covariance transform method used to derive the ML heights from HSRL backscatter profiles. HSRL ML heights are validated using ML heights derived from two radiosonde profile sites during CARES. Comparisons between ML heights from HSRL and a Vaisala ceilometer operated during CalNex were used to evaluate the representativeness of a fixed measurement over a larger region. In the Los Angeles basin, comparisons of ML heights derived from HSRL measurements and ML heights derived from the ceilometer result in a very good agreement (mean bias difference of 10 m and correlation coefficient of 0.89) up to 30 km away from the ceilometer site, but are essentially uncorrelated for larger distances, indicating that the spatial variability of the ML height is significant over these distances and not necessarily well captured by limited ground stations. The HSRL ML heights are also used to evaluate the performance in simulating the temporal and spatial variability of ML heights from the Weather Research and Forecasting Chemistry (WRF-Chem) community model. When compared to aerosol ML heights from HSRL, thermodynamic ML heights from WRF-Chem were underpredicted in the CalNex and CARES regions, shown by a bias difference value of −157 m and −29 m, respectively. Better agreement over the Central Valley than in mountainous regions suggests that some variability in the ML height is not well captured at the 4 km grid resolution of the model. A small but significant number of cases have poor agreement when WRF-Chem consistently overestimates the ML height in the late afternoon. Additional comparisons with WRF-Chem aerosol mixed layer heights show no significant improvement over thermodynamic ML heights, confirming that any differences between measurement and model are not due to the methodology of ML height determination.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference41 articles.
1. Angevine, W. and Mitchell, K.: Evaluation of the NCEP Mesoscale Eta Model Convective Boundary Layer for Air Quality Applications, Mon. Weather Rev., 129, 2761–2775, 2001. 2. Atlas, D. and Korb, C. L.: Weather and Climate Needs for Lidar Observations from Space and Concepts for Their Realization, B. Am. Meteorol. Soc., 62, 1270–1285, 1981. 3. Bidokhti, A. A., Khoshsima, M., Sabetghadam, S., and Khalesifard, H. M.: Estimation of urban mixed layer height in Zanjan using LIDAR observations and numerical modeling. J. Earth Syst. Sci., 117, 925–934, 2008. 4. Barnard, J. C., Fast, J. D., Paredes-Miranda, G. L., Arnott, P. W., and Laskin, A.: Technical Note: Evaluation of the WRF-Chem "aerosol chemical to aerosol optical properties" module using data from the MILAGRO campaign. Atmos. Chem. Phys., 10, 7325–7340, https://doi.org/10.5194/acp-10-7325-2010, 2010. 5. Baker, K. R., Misenis, C., Obland, M. D., Ferrare, R. A., Scarino, A. J., and Kelly, J. T.: Evaluation of surface and upper air fine scale WRF meteorological modeling of the May and June 2010 CalNex period in California, Atmos. Environ., https://doi.org/10.1016/j.atmosenv.2013.08.006, 2013.
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|