Boundary Layer Structures Over the Northwest Atlantic Derived From Airborne High Spectral Resolution Lidar and Dropsonde Measurements During the ACTIVATE Campaign

Author:

Xu Y.1ORCID,Mitchell B.1,Delgado R.1,Ouyed A.1,Crosbie E.23ORCID,Cutler L.1ORCID,Fenn M.2ORCID,Ferrare R.2ORCID,Hair J.2ORCID,Hostetler C.2ORCID,Kirschler S.45ORCID,Kleb M.2ORCID,Nehrir A.2ORCID,Painemal D.2ORCID,Robinson C. E.2,Scarino A. J.2,Shingler T.2,Shook M. A.2ORCID,Sorooshian A.16,Thornhill K. L.2ORCID,Voigt C.45ORCID,Wang H.7ORCID,Zeng X.1,Zuidema P.8ORCID

Affiliation:

1. Department of Hydrology and Atmospheric Sciences University of Arizona Tucson AZ USA

2. NASA Langley Research Center Hampton VA USA

3. Analytical Mechanics Associates, Inc. Hampton VA USA

4. Institut für Physik der Atmosphäre Deutsches Zentrum für Luft‐ und Raumfahrt (DLR) Wessling Germany

5. Institut für Physik der Atmosphäre Johannes Gutenberg‐Universität Mainz Germany

6. Department of Chemical and Environmental Engineering University of Arizona Tucson AZ USA

7. Atmospheric Sciences and Global Change Division Pacific Northwest National Laboratory Richland WA USA

8. Department of Atmospheric Sciences Rosenstiel School University of Miami Miami FL USA

Abstract

AbstractThe Planetary Boundary Layer height (PBLH) is essential for studying PBL and ocean‐atmosphere interactions. Marine PBL is usually defined to include a mixed layer (ML) and a capping inversion layer. The ML height (MLH) estimated from the measurements of aerosol backscatter by a lidar was usually compared with PBLH determined from radiosondes/dropsondes in the past, as the PBLH is usually similar to MLH in nature. However, PBLH can be much greater than MLH for decoupled PBL. Here we evaluate the retrieved MLH from an airborne lidar (HSRL‐2) by utilizing 506 co‐located dropsondes during the ACTIVATE field campaign over the Northwest Atlantic from 2020 to 2022. First, we define and determine the MLH and PBLH from the temperature and humidity profiles of each dropsonde, and find that the MLH values from HSRL‐2 and dropsondes agree well with each other, with a coefficient of determination of 0.66 and median difference of 18 m. In contrast, the HSRL‐2 MLH data do not correspond to dropsonde‐derived PBLH, with a median difference of −47 m. Therefore, we modify the current operational and automated HSRL‐2 wavelet‐based algorithm for PBLH retrieval, decreasing the median difference significantly to −8 m. Further data analysis indicates that these conclusions remain the same for cases with higher or lower cloud fractions, and for decoupled PBLs. These results demonstrate the potential of using HSRL‐2 aerosol backscatter data to estimate both marine MLH and PBLH and suggest that lidar‐derived MLH should be compared with radiosonde/dropsonde‐determined MLH (not PBLH) in general.

Funder

Earth Sciences Division

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3