Global patterns of lightning properties derived by OTD and LIS
-
Published:2014-10-08
Issue:10
Volume:14
Page:2715-2726
-
ISSN:1684-9981
-
Container-title:Natural Hazards and Earth System Sciences
-
language:en
-
Short-container-title:Nat. Hazards Earth Syst. Sci.
Author:
Beirle S.ORCID, Koshak W., Blakeslee R., Wagner T.
Abstract
Abstract. The satellite instruments Optical Transient Detector (OTD) and Lightning Imaging Sensor (LIS) provide unique empirical data about the frequency of lightning flashes around the globe (OTD), and the tropics (LIS), which have been used before to compile a well-received global climatology of flash rate densities. Here we present a statistical analysis of various additional lightning properties derived from OTD / LIS, i.e., the number of so-called "events" and "groups" per flash, as well as the mean flash duration, footprint and radiance. These normalized quantities, which can be associated with the flash "strength", show consistent spatial patterns; most strikingly, oceanic flashes show higher values than continental flashes for all properties. Over land, regions with high (eastern US) and low (India) flash strength can be clearly identified. We discuss possible causes for and implications of the observed regional differences. Although a direct quantitative interpretation of the investigated flash properties is difficult, the observed spatial patterns provide valuable information for the interpretation and application of climatological flash rates. Due to the systematic regional variations of physical flash characteristics, viewing conditions, and/or measurement sensitivities, parametrizations of lightning NOx based on total flash rate densities alone are probably affected by regional biases.
Publisher
Copernicus GmbH
Subject
General Earth and Planetary Sciences
Reference46 articles.
1. Beirle, S., Huntrieser, H., and Wagner, T.: Direct satellite observation of lightning-produced NOx, Atmos. Chem. Phys., 10, 10965–10986, https://doi.org/10.5194/acp-10-10965-2010, 2010. 2. Blakeslee, R. J., Mach, D. M., Bateman, M. G., and Bailey, J. C.: Seasonal variations in the lightning diurnal cycle and implications for the global electric circuit, Atmos. Res., 135–136, 228–243, https://doi.org/10.1016/j.atmosres.2012.09.023, 2014. 3. Blyth, A. M., Christian Jr., H. J., Driscoll, K., Gadian, A. M., and Latham, J.: Determination of ice precipitation rates and thunderstorm anvil ice contents from satellite observations of lightning, Atmos. Res., 59–60, 217–229, https://doi.org/10.1016/S0169-8095(01)00117-X, 2001. 4. Boccippio, D. J., Koshak, W., Blakeslee, R., Driscoll, K., Mach, D., Buechler, D., Boeck, W., Christian, H. J., and Goodman, S. J.: The Optical Transient Detector (OTD): instrument characteristics and cross-sensor validation, J. Atmos. Ocean. Tech., 17, 441–458, 2000. 5. Boccippio, D. J., Cummins, K. L., Christian, H. J., and Goodman, S. J.: Combined satellite- and surface-based estimation of the intracloud-cloud-to-ground lightning ratio over the continental United States, Mon. Weather Rev., 129, 108–122, 2001.
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|