Correcting for Undercounting of Lightning Flashes by Space‐Based Optical Sensors

Author:

McFarland P. J.1ORCID,Brune W. H.1ORCID

Affiliation:

1. Department of Meteorology and Atmospheric Science The Pennsylvania State University University Park PA USA

Abstract

AbstractAccurate measurements of global lightning are essential for understanding present and future atmospheric electricity, composition, and climate. The latest space‐based lightning detector, the Geostationary Lightning Mapper (GLM), was the first to be placed in geostationary orbit, with a continuous view of most of the American continents. Prior to the GLM, the Lightning Imaging Sensor (LIS) on the Tropical Rainfall Measuring Mission (TRMM) satellite collected lightning measurements from which numerous lightning climatologies have been developed, including those used in global models. However, this study finds that both the GLM and a second, similar LIS placed on the International Space Station (ISS) in 2017 detect lightning at similar rates and are undercounting lightning compared to ground‐based Lightning Mapping Arrays (LMAs). The GLM undercounts lightning by an average factor of 7.0, reaching a maximum over 120 as a function of satellite zenith angle, radar reflectivity at a height where the temperature is −10°C, flash height, and thunderstorm polarity. The LIS is estimated to undercount lightning by an average factor of 5.6, reaching a maximum of 75.0 as a function of radar reflectivity at the −10°C level, flash height, and thunderstorm polarity. Preliminary predictive equations for the GLM and LIS lightning undercount factor, or scaling factor (SF), use ice‐water content, equilibrium level, flash height, and satellite zenith angle, all of which can be derived in models. These equations are developed to encourage updating lightning parameterizations within global models and will likely increase modeled lightning's effects on atmospheric electrical circuits, composition, chemistry, and climate change.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

Subject

Space and Planetary Science,Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3