Modelling calving front dynamics using a level-set method: application to Jakobshavn Isbræ, West Greenland
-
Published:2016-03-03
Issue:2
Volume:10
Page:497-510
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Bondzio Johannes H., Seroussi HélèneORCID, Morlighem MathieuORCID, Kleiner ThomasORCID, Rückamp MartinORCID, Humbert AngelikaORCID, Larour Eric Y.
Abstract
Abstract. Calving is a major mechanism of ice discharge of the Antarctic and Greenland ice sheets, and a change in calving front position affects the entire stress regime of marine terminating glaciers. The representation of calving front dynamics in a 2-D or 3-D ice sheet model remains non-trivial. Here, we present the theoretical and technical framework for a level-set method, an implicit boundary tracking scheme, which we implement into the Ice Sheet System Model (ISSM). This scheme allows us to study the dynamic response of a drainage basin to user-defined calving rates. We apply the method to Jakobshavn Isbræ, a major marine terminating outlet glacier of the West Greenland Ice Sheet. The model robustly reproduces the high sensitivity of the glacier to calving, and we find that enhanced calving triggers significant acceleration of the ice stream. Upstream acceleration is sustained through a combination of mechanisms. However, both lateral stress and ice influx stabilize the ice stream. This study provides new insights into the ongoing changes occurring at Jakobshavn Isbræ and emphasizes that the incorporation of moving boundaries and dynamic lateral effects, not captured in flow-line models, is key for realistic model projections of sea level rise on centennial timescales.
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Water Science and Technology
Reference51 articles.
1. Benn, D. I., Warren, C. R., and Mottram, R. H.: Calving processes and the
dynamics of calving glaciers, Earth-Sci. Rev., 82, 143–179,
https://doi.org/10.1016/j.earscirev.2007.02.002, 2007. 2. Brown, C., Meier, M., and Post, A.: Calving speed of Alaska tidewater
Glaciers, with application to Columbia Glacier, Alaska, US Geological
Survey Professional Paper, 1258-C, 13 pp., 1982. 3. Chang, Y.-C., Hou, T., Merriman, B., and Osher, S.: A level set formulation of
Eulerian interface capturing methods for incompressible fluid flows, J.
Comput. Phys., 124, 449–464, 1996. 4. Courant, R., Friedrichs, K., and Lewy, H.: Über die Partiellen
Differenzengleichungen der Mathematischen Physik, Math. Ann.,
100, 32–74, 1928. 5. Cuffey, K. M. and Paterson, W. S. B.: The Physics of Glaciers, Elsevier,
Burlington, Mass., 2010.
Cited by
56 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|