A halocarbon survey from a seagrass dominated subtropical lagoon, Ria Formosa (Portugal): flux pattern and isotopic composition
-
Published:2015-03-17
Issue:6
Volume:12
Page:1697-1711
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Weinberg I.,Bahlmann E.,Eckhardt T.,Michaelis W.,Seifert R.
Abstract
Abstract. In this study we report fluxes of chloromethane (CH3Cl), bromomethane (CH3Br), iodomethane (CH3I), and bromoform (CHBr3) from two sampling campaigns (summer and spring) in the seagrass dominated subtropical lagoon Ria Formosa, Portugal. Dynamic flux chamber measurements were performed when seagrass patches were either air-exposed or submerged. Overall, we observed highly variable fluxes from the seagrass meadows and attributed them to diurnal cycles, tidal effects, and the variety of possible sources and sinks in the seagrass meadows. The highest emissions with up to 130 nmol m−2 h−1 for CH3Br were observed during tidal changes, from air exposure to submergence and conversely. Furthermore, during the spring campaign, the emissions of halocarbons were significantly elevated during tidal inundation as compared to air exposure. Accompanying water sampling performed during both campaigns revealed elevated concentrations of CH3Cl and CH3Br, indicating productive sources within the lagoon. Stable carbon isotopes of halocarbons from the air and water phase along with source signatures were used to allocate the distinctive sources and sinks in the lagoon. Results suggest that CH3Cl was rather originating from seagrass meadows and water column than from salt marshes. Aqueous and atmospheric CH3Br was substantially enriched in 13C in comparison to source signatures for seagrass meadows and salt marshes. This suggests a significant contribution from the water phase on the atmospheric CH3Br in the lagoon. A rough global upscaling yields annual productions from seagrass meadows of 2.3–4.5 Gg yr−1, 0.5–1.0 Gg yr−1, 0.6–1.2 Gg yr−1, and 1.9–3.7 Gg yr−1 for CH3Cl, CH3Br, CH3I, and CHBr3 respectively. This suggests a minor contribution from seagrass meadows to the global production of CH3Cl and CH3Br with about 0.1 and 0.7%, respectively. In comparison to the known marine sources for CH3I and CHBr3, seagrass meadows are rather small sources.
Funder
Bundesministerium für Bildung und Forschung
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference71 articles.
1. Amachi, S., Kamagata, Y., Kanagawa, T., and Muramatsu, Y.: Bacteria mediate methylation of iodine in marine and terrestrial environments, Appl. Environ. Microb., 67, 2718–2722, 2001. 2. Anibal, J., Rocha, C., and Sprung, M.: Mudflat surface morphology as a structuring agent of algae and associated macroepifauna communities: A case study in the Ria Formosa, J. Sea Res., 57, 36–46, 2007. 3. Auer, N. R., Manzke, B. U., and Schulz-Bull, D. E.: Development of a purge and trap continuous flow system for the stable carbon isotope analysis of volatile halogenated organic compounds in water, J. Chromatogr. A, 1131, 24–36, 2006. 4. Bahlmann, E., Weinberg, I., Seifert, R., Tubbesing, C., and Michaelis, W.: A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons, Atmos. Meas. Tech., 4, 2073–2086, https://doi.org/10.5194/amt-4-2073-2011, 2011. 5. Bahlmann, E., Weinberg, I., Lavric(, J. V., Eckhard, T., Michaelis, W., Santos, R., and Seifert, R.: Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal), Biogeosciences Discuss., 11, 10571–10603, https://doi.org/10.5194/bgd-11-10571-2014, 2014.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|