Tidal controls on trace gas dynamics in a seagrass meadow of the Ria Formosa lagoon (southern Portugal)
Author:
Bahlmann E., Weinberg I., Lavrič J. V.ORCID, Eckhard T., Michaelis W., Santos R., Seifert R.
Abstract
Abstract. Coastal zones are important source regions for a variety of trace gases including halocarbons and sulphur-bearing species. While salt-marshes, macroalgae and phytoplankton communities have been intensively studied, little is known about trace gas fluxes in seagrass meadows. Here we report results of a newly developed dynamic flux chamber system that can be deployed in intertidal areas over full tidal cycles allowing for high time resolved measurements. The trace gases measured in this study included carbon dioxide (CO2), methane (CH4) and a variety of hydrocarbons, halocarbons and sulphur-bearing compounds. The high time resolved CO2 and CH4 flux measurements revealed a complex dynamic mediated by tide and light. In contrast to most previous studies our data indicate significantly enhanced fluxes during tidal immersion relative to periods of air exposure. Short emission peaks occured with onset of the feeder current at the sampling site. We suggest an overall strong effect of advective transport processes to explain the elevated fluxes during tidal immersion. Many emission estimates from tidally influenced coastal areas still rely on measurements carried out during low tide only. Hence, our results may have significant implications for budgeting trace gases in coastal areas. This dynamic flux chamber system provides intensive time series data of community respiration (at night) and net community production (during the day) of shallow coastal systems.
Funder
Bundesministerium für Bildung und Forschung Fundação para a Ciência e a Tecnologia
Publisher
Copernicus GmbH
Reference92 articles.
1. Alasdair, H. N. and Allard, A.-S.: Environmental Degradation and Transformation of Organic Chemicals, CRC Press, Boca Raton, 2008. 2. Amachi, S., Kamagata, Y., Kanagawa, T., and Muramatsu, Y.: Bacteria mediate methylation of iodine in marine and terrestrial environments, Appl. Environ. Microb., 67, 2718–2722, 2001. 3. Aneja, V. P.: Characterization of emissions of biogenic hydrogen sulfide, Tellus B, 38, 81–86, 1986. 4. Bahlmann, E., Weinberg, I., Seifert, R., Tubbesing, C., and Michaelis, W.: A high volume sampling system for isotope determination of volatile halocarbons and hydrocarbons, Atmos. Meas. Tech., 4, 2073–2086, https://doi.org/10.5194/amt-4-2073-2011, 2011. 5. Baird, A. J., Beckwith, C. W., Waldron, S., and Waddington, J. M.: Ebullition of methane-containing gas bubbles from near-surface Sphagnum peat, Geophys. Res. Lett., 31, L21505, https://doi.org/10.1029/2004GL021157, 2004.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|