Assessing the contribution of the ENSO and MJO to Australian dust activity based on satellite- and ground-based observations

Author:

Yu YanORCID,Ginoux PaulORCID

Abstract

Abstract. Despite Australian dust's critical role in the regional climate and surrounding marine ecosystems, the controlling factors of the spatiotemporal variations of Australian dust are not fully understood. Here we assess the connections between observed spatiotemporal variations of Australian dust with key modes of large-scale climate variability, namely the El Niño–Southern Oscillation (ENSO) and Madden–Julian Oscillation (MJO). Multiple dust observations from the Aerosol Robotic Network (AERONET), weather stations, and satellite instruments, namely the Moderate Resolution Imaging Spectroradiometer (MODIS) and Multi-angle Imaging SpectroRadiometer (MISR), are examined. The assessed multiple dust observations consistently identify the natural and agricultural dust hotspots in Australia, including the Lake Eyre basin, Lake Torrens basin, Lake Frome basin, Simpson Desert, Barwon–Darling basin, Riverina, Barkly Tableland, and the lee side of the Great Dividing Range, as well as a country-wide, austral spring-to-summer peak in dust activity. Our regression analysis of observed dust optical depth (DOD) upon an ocean Niño index confirms previous model-based findings on the enhanced dust activity in southern and eastern Australia during the subsequent austral spring and summer dust season following the strengthening of austral wintertime El Niño. Our analysis further indicates the modulation of the ENSO–dust relationship with the MJO phases. During sequential MJO phases, the dust-active center moves from west to east, associated with the eastward propagation of MJO, with the maximum enhancement in dust activity at about 120, 130, and 140∘ E, corresponding to MJO phases 1–2, 3–4, and 5–6, respectively. MJO phases 3–6 are favorable for enhanced ENSO modulation of dust activity, especially the occurrence of extreme dust events, in southeastern Australia, currently hypothesized to be attributed to the interaction between MJO-induced anomalies in convection and wind and ENSO-induced anomalies in soil moisture and vegetation.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3