Dust-drought interactions over the last 15,000 years: A network of lake sediment records from the San Juan Mountains, Colorado

Author:

Arcusa Stephanie H1ORCID,McKay Nicholas P1,Routson Cody C1,Munoz Samuel E23

Affiliation:

1. School of Earth and Sustainability, Northern Arizona University, USA

2. Marine Science Center, Department of Marine and Environmental Sciences, Northeastern University, USA

3. Department of Civil & Environmental Engineering, Northeastern University, USA

Abstract

Millions of people in the arid Southwest United States rely on snow-fed Colorado River water. Dust deposition on snow accelerates snowmelt, posing a challenge for water managers who also need to grapple with increased likelihood of drought due to climate change. Dust production is thought to increase during drought, but the impact of drought on dust deposition is unclear. To answer this question, total dust mass accumulation rate (DMAR) reconstructions were developed from sediment cores from three lakes in the San Juan Mountains, Colorado, spanning the last ~15,000 years. Monte-Carlo end-member analysis of particle size and elemental composition, which incorporates measurement and model uncertainties, was combined with age uncertainty to estimate DMAR for each lake. We also synthesize the records providing the first Holocene DMAR reconstruction for the region. The records show little relation between periods of frequent and severe drought (e.g. during medieval megadroughts) and periods of higher DMAR, although there is considerable uncertainty at short timescales. We find instead that sediment availability, modulated by natural or human-mediated geomorphic processes that generate sediment, and transport mechanisms are the key drivers. DMAR was highest during the Late Glacial-Interglacial Transition (LGIT, 15–11 kyr BP) and in the last 250 years, periods when sediment availability was enhanced. DMAR increased by 60% (16–85% 75% highest density region range) compared with the late-Holocene baseline starting in the 1770s and peaking in the 1840s, associated with the intensification of human activities. Human-induced dustiness also represents the highest interval of dust deposition in the last 11,000 years. Our results demonstrate that although the Colorado Plateau is naturally prone to dustiness, drought is a secondary driver of dust accumulation in the mountains. This suggests that land-use management decisions aimed at reducing land disturbance can mitigate future dust accumulation, despite projected increases in regional aridity.

Funder

Robert and Judith Braudy

Publisher

SAGE Publications

Subject

Paleontology,Earth-Surface Processes,Ecology,Archaeology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3