Intense photooxidative degradation of planktonic and bacterial lipids in sinking particles collected with sediment traps across the Canadian Beaufort Shelf (Arctic Ocean)

Author:

Rontani J.-F.,Charriere B.,Forest A.,Heussner S.,Vaultier F.,Petit M.,Delsaut N.,Fortier L.,Sempéré R.

Abstract

Abstract. The lipid content of seven samples of sinking particles collected with sediment traps moored at ~100 m depth in summer and fall across the Canadian Beaufort Shelf (Arctic Ocean) was investigated. Our main goal was to quantify and characterize the biotic and abiotic degradation processes that acted on sinking material during these periods. Diatoms, which dominated the phytoplanktonic assemblage in every trap sample, appeared to be remarkably sensitive to Type II (i.e. involving singlet oxygen) photodegradation processes in summer, but seemed to be relatively unaffected by biotic degradation at the same time. Hence, the relative recalcitrance of phytodetritus towards biodegradation processes during the Arctic midnight sun period was attributed to the strong photodegradation state of heterotrophic bacteria, which likely resulted from the efficient transfer of singlet oxygen from photodegraded phytoplanktonic cells to attached bacteria. In addition, the detection in trap samples of photoproducts specific to wax ester components found in herbivorous copepods demonstrated that zooplanktonic faecal material exported out of the euphotic zone in summer were as well affected by Type II photodegradation processes. By contrast, sinking particles collected during the autumn were not influenced by any light-driven stress. Further chemical analyses showed that photodegraded sinking particles contained an important amount of intact hydroperoxides, which could then induce a strong oxidative stress in underlying sediments.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3